Upload 3 files
Browse files- app.py +542 -0
- requirements.txt +16 -0
- utils.py +170 -0
app.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import json
|
2 |
+
# import os
|
3 |
+
# from utils import save_company_news
|
4 |
+
# from utils import sentiment_analysis_model
|
5 |
+
# from utils import news_summarization, audio_output, Topic_finder
|
6 |
+
# from collections import Counter
|
7 |
+
# import time
|
8 |
+
# import re
|
9 |
+
# from deep_translator import GoogleTranslator
|
10 |
+
# from pydub import AudioSegment
|
11 |
+
# import gc
|
12 |
+
# import torch
|
13 |
+
|
14 |
+
|
15 |
+
# print("Company News Summarization")
|
16 |
+
|
17 |
+
# company_name = input("Enter Company Name: ")
|
18 |
+
|
19 |
+
# if company_name:
|
20 |
+
# file_path = save_company_news(company_name)
|
21 |
+
|
22 |
+
# if os.path.exists(file_path):
|
23 |
+
# with open(file_path, "r", encoding="utf-8") as file:
|
24 |
+
# articles = json.load(file)
|
25 |
+
|
26 |
+
# for article in articles:
|
27 |
+
# print(f"\nTitle: {article['title']}")
|
28 |
+
# print(f"Content: {article['content'][:100]}...")
|
29 |
+
# print(f"Read more: {article['url']}")
|
30 |
+
|
31 |
+
# del articles
|
32 |
+
# gc.collect()
|
33 |
+
# else:
|
34 |
+
# print("Failed to fetch news. Try again.")
|
35 |
+
# else:
|
36 |
+
# print("Please enter a company name.")
|
37 |
+
|
38 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
39 |
+
# data = json.load(file)
|
40 |
+
|
41 |
+
# for article in data:
|
42 |
+
# topics = Topic_finder(article['title'])
|
43 |
+
|
44 |
+
# sentiment = sentiment_analysis_model(article['content'])
|
45 |
+
# article["sentiment"] = sentiment['sentiment']
|
46 |
+
|
47 |
+
# del sentiment
|
48 |
+
# gc.collect()
|
49 |
+
|
50 |
+
# summary = news_summarization(article["content"])
|
51 |
+
# article["summary"] = summary
|
52 |
+
|
53 |
+
# article["topics"] = topics
|
54 |
+
|
55 |
+
# if torch.cuda.is_available():
|
56 |
+
# torch.cuda.empty_cache()
|
57 |
+
|
58 |
+
# gc.collect()
|
59 |
+
|
60 |
+
# with open(f"Company/{company_name}.json", "w", encoding="utf-8") as file:
|
61 |
+
# json.dump(data, file, indent=4)
|
62 |
+
|
63 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
64 |
+
# articles = json.load(file)
|
65 |
+
|
66 |
+
# sentiment_counts = Counter(article["sentiment"] for article in articles)
|
67 |
+
|
68 |
+
# print("Sentiment Counts:")
|
69 |
+
# print("Positive:", sentiment_counts.get("Positive", 0))
|
70 |
+
# print("Negative:", sentiment_counts.get("Negative", 0))
|
71 |
+
# print("Neutral:", sentiment_counts.get("Neutral", 0))
|
72 |
+
|
73 |
+
# del articles
|
74 |
+
# del sentiment_counts
|
75 |
+
# gc.collect()
|
76 |
+
|
77 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
78 |
+
# data = json.load(file)
|
79 |
+
|
80 |
+
# translator = GoogleTranslator(source="en", target="hi")
|
81 |
+
|
82 |
+
# audio_folder = "audio"
|
83 |
+
# os.makedirs(audio_folder, exist_ok=True)
|
84 |
+
|
85 |
+
# for file in os.listdir(audio_folder):
|
86 |
+
# file_path = os.path.join(audio_folder, file)
|
87 |
+
# if os.path.isfile(file_path):
|
88 |
+
# os.remove(file_path)
|
89 |
+
|
90 |
+
# text_data = ""
|
91 |
+
# audio_files = []
|
92 |
+
|
93 |
+
# def split_text(text, max_length=4500):
|
94 |
+
# sentences = re.split(r'(?<=[.!?])\s+', text)
|
95 |
+
# chunks = []
|
96 |
+
# current_chunk = ""
|
97 |
+
|
98 |
+
# for sentence in sentences:
|
99 |
+
# if len(current_chunk) + len(sentence) + 1 <= max_length:
|
100 |
+
# current_chunk += " " + sentence if current_chunk else sentence
|
101 |
+
# else:
|
102 |
+
# chunks.append(current_chunk)
|
103 |
+
# current_chunk = sentence
|
104 |
+
|
105 |
+
# if current_chunk:
|
106 |
+
# chunks.append(current_chunk)
|
107 |
+
|
108 |
+
# return chunks
|
109 |
+
|
110 |
+
# for i, article in enumerate(data, start=1):
|
111 |
+
# title_translated = translator.translate(article['title'])
|
112 |
+
|
113 |
+
# content_chunks = split_text(article['content'])
|
114 |
+
# translated_chunks = []
|
115 |
+
|
116 |
+
# for chunk in content_chunks:
|
117 |
+
# try:
|
118 |
+
# translated_chunk = translator.translate(chunk)
|
119 |
+
# translated_chunks.append(translated_chunk)
|
120 |
+
# time.sleep(0.5)
|
121 |
+
# except Exception as e:
|
122 |
+
# print(f"Error translating chunk: {str(e)}")
|
123 |
+
# translated_chunks.append(f"Translation error: {str(e)}")
|
124 |
+
|
125 |
+
# content_translated = " ".join(translated_chunks)
|
126 |
+
|
127 |
+
# del content_chunks
|
128 |
+
# gc.collect()
|
129 |
+
|
130 |
+
# article_text = (f"अब, आप लेख संख्या {i} सुन रहे हैं जिसका शीर्षक है: {title_translated}\n"
|
131 |
+
# f"अब, आप लेख संख्या {i} की सामग्री सुन रहे हैं।\n"
|
132 |
+
# f"सामग्री: {content_translated}\n\n")
|
133 |
+
|
134 |
+
# text_data += article_text
|
135 |
+
|
136 |
+
# audio_file = f"{audio_folder}/article_{i}.mp3"
|
137 |
+
# audio_output(article_text, audio_file)
|
138 |
+
# audio_files.append(audio_file)
|
139 |
+
|
140 |
+
# del article_text
|
141 |
+
# del content_translated
|
142 |
+
# del translated_chunks
|
143 |
+
# gc.collect()
|
144 |
+
|
145 |
+
# if torch.cuda.is_available():
|
146 |
+
# torch.cuda.empty_cache()
|
147 |
+
|
148 |
+
# time.sleep(1)
|
149 |
+
|
150 |
+
# output_file = f"Company/{company_name}_translated.txt"
|
151 |
+
# with open(output_file, "w", encoding="utf-8") as file:
|
152 |
+
# file.write(text_data)
|
153 |
+
|
154 |
+
# del text_data
|
155 |
+
# gc.collect()
|
156 |
+
|
157 |
+
# def combine_audio_files(audio_folder, output_file):
|
158 |
+
# try:
|
159 |
+
# print(f"Combining audio files from {audio_folder}...")
|
160 |
+
# audio_files = [f for f in os.listdir(audio_folder) if f.endswith('.mp3') and f != os.path.basename(output_file)]
|
161 |
+
|
162 |
+
# if not audio_files:
|
163 |
+
# print("No audio files found to combine.")
|
164 |
+
# return False
|
165 |
+
|
166 |
+
# audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
167 |
+
# print(f"Found {len(audio_files)} audio files to combine.")
|
168 |
+
|
169 |
+
# combined = AudioSegment.empty()
|
170 |
+
|
171 |
+
# for file in audio_files:
|
172 |
+
# file_path = os.path.join(audio_folder, file)
|
173 |
+
# try:
|
174 |
+
# audio = AudioSegment.from_mp3(file_path)
|
175 |
+
# combined += audio
|
176 |
+
# print(f"Added {file}")
|
177 |
+
|
178 |
+
# del audio
|
179 |
+
# gc.collect()
|
180 |
+
# except Exception as e:
|
181 |
+
# print(f"Error processing {file}: {str(e)}")
|
182 |
+
|
183 |
+
# combined.export(output_file, format="mp3")
|
184 |
+
# print(f"Successfully combined audio files into {output_file}")
|
185 |
+
|
186 |
+
# del combined
|
187 |
+
# gc.collect()
|
188 |
+
|
189 |
+
# return True
|
190 |
+
|
191 |
+
# except Exception as e:
|
192 |
+
# print(f"Error combining audio files: {str(e)}")
|
193 |
+
# return False
|
194 |
+
|
195 |
+
# audio_folder = "audio"
|
196 |
+
# output_file = "combined_news.mp3"
|
197 |
+
# combine_audio_files(audio_folder, output_file)
|
198 |
+
# print("Audio combining process completed!")
|
199 |
+
|
200 |
+
# if torch.cuda.is_available():
|
201 |
+
# torch.cuda.empty_cache()
|
202 |
+
|
203 |
+
# gc.collect()
|
204 |
+
|
205 |
+
import streamlit as st
|
206 |
+
import json
|
207 |
+
import os
|
208 |
+
from utils import save_company_news
|
209 |
+
from utils import sentiment_analysis_model
|
210 |
+
from utils import news_summarization, audio_output, Topic_finder
|
211 |
+
from collections import Counter
|
212 |
+
import time
|
213 |
+
import re
|
214 |
+
from deep_translator import GoogleTranslator
|
215 |
+
from pydub import AudioSegment
|
216 |
+
import gc
|
217 |
+
import torch
|
218 |
+
|
219 |
+
# Set page config
|
220 |
+
st.set_page_config(
|
221 |
+
page_title="Company News Summarization",
|
222 |
+
page_icon="📰",
|
223 |
+
layout="wide"
|
224 |
+
)
|
225 |
+
|
226 |
+
# Create necessary folders
|
227 |
+
os.makedirs("Company", exist_ok=True)
|
228 |
+
os.makedirs("audio", exist_ok=True)
|
229 |
+
|
230 |
+
def split_text(text, max_length=4500):
|
231 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
232 |
+
chunks = []
|
233 |
+
current_chunk = ""
|
234 |
+
|
235 |
+
for sentence in sentences:
|
236 |
+
if len(current_chunk) + len(sentence) + 1 <= max_length:
|
237 |
+
current_chunk += " " + sentence if current_chunk else sentence
|
238 |
+
else:
|
239 |
+
chunks.append(current_chunk)
|
240 |
+
current_chunk = sentence
|
241 |
+
|
242 |
+
if current_chunk:
|
243 |
+
chunks.append(current_chunk)
|
244 |
+
|
245 |
+
return chunks
|
246 |
+
|
247 |
+
def combine_audio_files(audio_folder, output_file):
|
248 |
+
try:
|
249 |
+
st.info(f"Combining audio files from {audio_folder}...")
|
250 |
+
audio_files = [f for f in os.listdir(audio_folder) if f.endswith('.mp3') and f != os.path.basename(output_file)]
|
251 |
+
|
252 |
+
if not audio_files:
|
253 |
+
st.warning("No audio files found to combine.")
|
254 |
+
return False
|
255 |
+
|
256 |
+
audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
257 |
+
st.info(f"Found {len(audio_files)} audio files to combine.")
|
258 |
+
|
259 |
+
combined = AudioSegment.empty()
|
260 |
+
|
261 |
+
for file in audio_files:
|
262 |
+
file_path = os.path.join(audio_folder, file)
|
263 |
+
try:
|
264 |
+
audio = AudioSegment.from_mp3(file_path)
|
265 |
+
combined += audio
|
266 |
+
|
267 |
+
del audio
|
268 |
+
gc.collect()
|
269 |
+
except Exception as e:
|
270 |
+
st.error(f"Error processing {file}: {str(e)}")
|
271 |
+
|
272 |
+
combined.export(output_file, format="mp3")
|
273 |
+
st.success(f"Successfully combined audio files into {output_file}")
|
274 |
+
|
275 |
+
del combined
|
276 |
+
gc.collect()
|
277 |
+
|
278 |
+
return True
|
279 |
+
|
280 |
+
except Exception as e:
|
281 |
+
st.error(f"Error combining audio files: {str(e)}")
|
282 |
+
return False
|
283 |
+
|
284 |
+
def process_company_news(company_name):
|
285 |
+
with st.spinner("Fetching company news..."):
|
286 |
+
file_path = save_company_news(company_name)
|
287 |
+
|
288 |
+
if not os.path.exists(file_path):
|
289 |
+
st.error("Failed to fetch news. Try again.")
|
290 |
+
return False
|
291 |
+
|
292 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
293 |
+
articles = json.load(file)
|
294 |
+
|
295 |
+
st.success(f"Found {len(articles)} articles for {company_name}")
|
296 |
+
|
297 |
+
# Display a preview of the articles
|
298 |
+
with st.expander("Preview Articles"):
|
299 |
+
for article in articles:
|
300 |
+
st.subheader(article['title'])
|
301 |
+
st.write(f"{article['content'][:100]}...")
|
302 |
+
st.write(f"[Read more]({article['url']})")
|
303 |
+
|
304 |
+
del articles
|
305 |
+
gc.collect()
|
306 |
+
|
307 |
+
with st.spinner("Analyzing sentiment, extracting topics, and generating summaries..."):
|
308 |
+
progress_bar = st.progress(0)
|
309 |
+
|
310 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
311 |
+
data = json.load(file)
|
312 |
+
|
313 |
+
total_articles = len(data)
|
314 |
+
|
315 |
+
for i, article in enumerate(data):
|
316 |
+
topics = Topic_finder(article['title'])
|
317 |
+
|
318 |
+
sentiment = sentiment_analysis_model(article['content'])
|
319 |
+
article["sentiment"] = sentiment['sentiment']
|
320 |
+
|
321 |
+
del sentiment
|
322 |
+
gc.collect()
|
323 |
+
|
324 |
+
summary = news_summarization(article["content"])
|
325 |
+
article["summary"] = summary
|
326 |
+
|
327 |
+
article["topics"] = topics
|
328 |
+
|
329 |
+
if torch.cuda.is_available():
|
330 |
+
torch.cuda.empty_cache()
|
331 |
+
|
332 |
+
gc.collect()
|
333 |
+
progress_bar.progress((i + 1) / total_articles)
|
334 |
+
|
335 |
+
with open(f"Company/{company_name}.json", "w", encoding="utf-8") as file:
|
336 |
+
json.dump(data, file, indent=4)
|
337 |
+
|
338 |
+
with st.spinner("Counting sentiment..."):
|
339 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
340 |
+
articles = json.load(file)
|
341 |
+
|
342 |
+
sentiment_counts = Counter(article["sentiment"] for article in articles)
|
343 |
+
|
344 |
+
st.write("### Sentiment Analysis")
|
345 |
+
col1, col2, col3 = st.columns(3)
|
346 |
+
col1.metric("Positive", sentiment_counts.get("Positive", 0))
|
347 |
+
col2.metric("Negative", sentiment_counts.get("Negative", 0))
|
348 |
+
col3.metric("Neutral", sentiment_counts.get("Neutral", 0))
|
349 |
+
|
350 |
+
del articles
|
351 |
+
del sentiment_counts
|
352 |
+
gc.collect()
|
353 |
+
|
354 |
+
with st.spinner("Translating content and generating audio..."):
|
355 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
356 |
+
data = json.load(file)
|
357 |
+
|
358 |
+
translator = GoogleTranslator(source="en", target="hi")
|
359 |
+
|
360 |
+
audio_folder = "audio"
|
361 |
+
os.makedirs(audio_folder, exist_ok=True)
|
362 |
+
|
363 |
+
# Clear previous audio files
|
364 |
+
for file in os.listdir(audio_folder):
|
365 |
+
file_path = os.path.join(audio_folder, file)
|
366 |
+
if os.path.isfile(file_path):
|
367 |
+
os.remove(file_path)
|
368 |
+
|
369 |
+
text_data = ""
|
370 |
+
audio_files = []
|
371 |
+
|
372 |
+
progress_bar = st.progress(0)
|
373 |
+
|
374 |
+
for i, article in enumerate(data, start=1):
|
375 |
+
title_translated = translator.translate(article['title'])
|
376 |
+
|
377 |
+
content_chunks = split_text(article['content'])
|
378 |
+
translated_chunks = []
|
379 |
+
|
380 |
+
for chunk in content_chunks:
|
381 |
+
try:
|
382 |
+
translated_chunk = translator.translate(chunk)
|
383 |
+
translated_chunks.append(translated_chunk)
|
384 |
+
time.sleep(0.5)
|
385 |
+
except Exception as e:
|
386 |
+
st.error(f"Error translating chunk: {str(e)}")
|
387 |
+
translated_chunks.append(f"Translation error: {str(e)}")
|
388 |
+
|
389 |
+
content_translated = " ".join(translated_chunks)
|
390 |
+
|
391 |
+
del content_chunks
|
392 |
+
gc.collect()
|
393 |
+
|
394 |
+
article_text = (f"अब, आप लेख संख्या {i} सुन रहे हैं जिसका शीर्षक है: {title_translated}\n"
|
395 |
+
f"अब, आप लेख संख्या {i} की सामग्री सुन रहे हैं।\n"
|
396 |
+
f"सामग्री: {content_translated}\n\n")
|
397 |
+
|
398 |
+
text_data += article_text
|
399 |
+
|
400 |
+
audio_file = f"{audio_folder}/article_{i}.mp3"
|
401 |
+
audio_output(article_text, audio_file)
|
402 |
+
audio_files.append(audio_file)
|
403 |
+
|
404 |
+
del article_text
|
405 |
+
del content_translated
|
406 |
+
del translated_chunks
|
407 |
+
gc.collect()
|
408 |
+
|
409 |
+
if torch.cuda.is_available():
|
410 |
+
torch.cuda.empty_cache()
|
411 |
+
|
412 |
+
progress_bar.progress(i / len(data))
|
413 |
+
time.sleep(1)
|
414 |
+
|
415 |
+
output_file = f"Company/{company_name}_translated.txt"
|
416 |
+
with open(output_file, "w", encoding="utf-8") as file:
|
417 |
+
file.write(text_data)
|
418 |
+
|
419 |
+
del text_data
|
420 |
+
gc.collect()
|
421 |
+
|
422 |
+
with st.spinner("Combining audio files..."):
|
423 |
+
output_file = "combined_news.mp3"
|
424 |
+
combine_success = combine_audio_files(audio_folder, output_file)
|
425 |
+
|
426 |
+
if combine_success:
|
427 |
+
st.success("Audio combining process completed!")
|
428 |
+
else:
|
429 |
+
st.error("Failed to combine audio files.")
|
430 |
+
|
431 |
+
if torch.cuda.is_available():
|
432 |
+
torch.cuda.empty_cache()
|
433 |
+
|
434 |
+
gc.collect()
|
435 |
+
|
436 |
+
return True
|
437 |
+
|
438 |
+
# Main app interface
|
439 |
+
st.title("Company News Summarization and Audio Generation")
|
440 |
+
|
441 |
+
with st.sidebar:
|
442 |
+
st.header("Enter Company Details")
|
443 |
+
company_name = st.text_input("Company Name")
|
444 |
+
process_button = st.button("Process Company News", type="primary")
|
445 |
+
|
446 |
+
# Process data when button is clicked
|
447 |
+
if process_button and company_name:
|
448 |
+
success = process_company_news(company_name)
|
449 |
+
if success:
|
450 |
+
st.session_state.processing_complete = True
|
451 |
+
st.session_state.company_name = company_name
|
452 |
+
elif process_button and not company_name:
|
453 |
+
st.error("Please enter a company name.")
|
454 |
+
|
455 |
+
# Show results after processing
|
456 |
+
if 'processing_complete' in st.session_state and st.session_state.processing_complete:
|
457 |
+
company_name = st.session_state.company_name
|
458 |
+
|
459 |
+
st.header(f"Results for {company_name}")
|
460 |
+
|
461 |
+
# Create tabs for different outputs
|
462 |
+
tab1, tab2, tab3 = st.tabs(["Summary", "Translated Text", "Audio"])
|
463 |
+
|
464 |
+
with tab1:
|
465 |
+
st.subheader("News Summary")
|
466 |
+
try:
|
467 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
468 |
+
articles = json.load(file)
|
469 |
+
|
470 |
+
for i, article in enumerate(articles, 1):
|
471 |
+
with st.expander(f"Article {i}: {article['title']}"):
|
472 |
+
st.write(f"**Summary:** {article['summary']}")
|
473 |
+
st.write(f"**Sentiment:** {article['sentiment']}")
|
474 |
+
st.write(f"**Topics:** {', '.join(article['topics'])}")
|
475 |
+
st.write(f"**URL:** {article['url']}")
|
476 |
+
except Exception as e:
|
477 |
+
st.error(f"Error loading summary data: {str(e)}")
|
478 |
+
|
479 |
+
with tab2:
|
480 |
+
st.subheader("Translated Text (Hindi)")
|
481 |
+
try:
|
482 |
+
with open(f"Company/{company_name}_translated.txt", "r", encoding="utf-8") as file:
|
483 |
+
text_content = file.read()
|
484 |
+
st.download_button(
|
485 |
+
label="Download Translated Text",
|
486 |
+
data=text_content,
|
487 |
+
file_name=f"{company_name}_translated.txt",
|
488 |
+
mime="text/plain"
|
489 |
+
)
|
490 |
+
st.text_area("Content", text_content, height=400)
|
491 |
+
except Exception as e:
|
492 |
+
st.error(f"Error loading translated text: {str(e)}")
|
493 |
+
|
494 |
+
with tab3:
|
495 |
+
st.subheader("Audio Files")
|
496 |
+
|
497 |
+
st.write("### Combined Audio")
|
498 |
+
try:
|
499 |
+
with open("combined_news.mp3", "rb") as file:
|
500 |
+
combined_audio_bytes = file.read()
|
501 |
+
|
502 |
+
st.audio(combined_audio_bytes, format="audio/mp3")
|
503 |
+
st.download_button(
|
504 |
+
label="Download Combined Audio",
|
505 |
+
data=combined_audio_bytes,
|
506 |
+
file_name="combined_news.mp3",
|
507 |
+
mime="audio/mp3"
|
508 |
+
)
|
509 |
+
except Exception as e:
|
510 |
+
st.error(f"Error loading combined audio: {str(e)}")
|
511 |
+
|
512 |
+
st.write("### Individual Article Audio Files")
|
513 |
+
try:
|
514 |
+
audio_files = [f for f in os.listdir("audio") if f.endswith('.mp3')]
|
515 |
+
audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
516 |
+
|
517 |
+
for audio_file in audio_files:
|
518 |
+
with st.expander(f"{audio_file}"):
|
519 |
+
with open(f"audio/{audio_file}", "rb") as file:
|
520 |
+
audio_bytes = file.read()
|
521 |
+
st.audio(audio_bytes, format="audio/mp3")
|
522 |
+
st.download_button(
|
523 |
+
label=f"Download {audio_file}",
|
524 |
+
data=audio_bytes,
|
525 |
+
file_name=audio_file,
|
526 |
+
mime="audio/mp3"
|
527 |
+
)
|
528 |
+
except Exception as e:
|
529 |
+
st.error(f"Error loading individual audio files: {str(e)}")
|
530 |
+
|
531 |
+
# Instructions at the bottom
|
532 |
+
with st.expander("How to use this app"):
|
533 |
+
st.write("""
|
534 |
+
1. Enter the name of a company in the sidebar.
|
535 |
+
2. Click 'Process Company News' button to start the analysis.
|
536 |
+
3. Wait for the processing to complete (this may take some time depending on the number of articles).
|
537 |
+
4. View the results in the different tabs:
|
538 |
+
- Summary: See sentiment analysis, topics, and summaries of each article
|
539 |
+
- Translated Text: View the Hindi translation of all articles
|
540 |
+
- Audio: Listen to or download the audio files in Hindi
|
541 |
+
""")
|
542 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests==2.31.0
|
2 |
+
beautifulsoup4==4.12.2
|
3 |
+
newspaper3k==0.2.8
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
scipy
|
7 |
+
numpy
|
8 |
+
pandas
|
9 |
+
torch
|
10 |
+
IPython
|
11 |
+
soundfile
|
12 |
+
deep_translator
|
13 |
+
pydub
|
14 |
+
bertopic
|
15 |
+
sentence_transformers
|
16 |
+
streamlit
|
utils.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import re
|
7 |
+
from newspaper import Article
|
8 |
+
from html import unescape
|
9 |
+
from transformers import pipeline,VitsModel, AutoTokenizer
|
10 |
+
import torch
|
11 |
+
import soundfile as sf
|
12 |
+
from bertopic import BERTopic
|
13 |
+
from sentence_transformers import SentenceTransformer
|
14 |
+
|
15 |
+
def clean_text(text):
|
16 |
+
text = unescape(text)
|
17 |
+
text = re.sub(r'\s+', ' ', text)
|
18 |
+
text = re.sub(r'<.*?>', '', text)
|
19 |
+
text = text.replace('\n', ' ').replace('\r', ' ')
|
20 |
+
return text.strip()
|
21 |
+
|
22 |
+
def search_news(company_name, num_articles=10):
|
23 |
+
query = f"{company_name} news".replace(' ', '+')
|
24 |
+
headers = {
|
25 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
26 |
+
}
|
27 |
+
search_url = f"https://www.google.com/search?q={query}&tbm=nws"
|
28 |
+
|
29 |
+
try:
|
30 |
+
response = requests.get(search_url, headers=headers)
|
31 |
+
response.raise_for_status()
|
32 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
33 |
+
|
34 |
+
news_links = []
|
35 |
+
news_divs = soup.find_all('div', class_='SoaBEf')
|
36 |
+
|
37 |
+
for div in news_divs:
|
38 |
+
link_tag = div.find('a')
|
39 |
+
if link_tag:
|
40 |
+
href = link_tag.get('href')
|
41 |
+
if href.startswith('/url?q='):
|
42 |
+
url = href.split('/url?q=')[1].split('&sa=')[0]
|
43 |
+
news_links.append(url)
|
44 |
+
elif href.startswith('http'):
|
45 |
+
news_links.append(href)
|
46 |
+
|
47 |
+
return news_links
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error searching for news: {str(e)}")
|
50 |
+
return []
|
51 |
+
|
52 |
+
def extract_article_content(url):
|
53 |
+
try:
|
54 |
+
article = Article(url)
|
55 |
+
article.download()
|
56 |
+
article.parse()
|
57 |
+
|
58 |
+
if not article.text.strip():
|
59 |
+
raise ValueError("Empty article content")
|
60 |
+
|
61 |
+
return {
|
62 |
+
"title": clean_text(article.title),
|
63 |
+
"content": clean_text(article.text),
|
64 |
+
"url": url
|
65 |
+
}
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Skipping article {url} due to error: {str(e)}")
|
68 |
+
return None
|
69 |
+
|
70 |
+
def save_company_news(company_name, num_articles=10):
|
71 |
+
news_urls = search_news(company_name)
|
72 |
+
articles = []
|
73 |
+
|
74 |
+
for url in news_urls:
|
75 |
+
if len(articles) >= num_articles:
|
76 |
+
break
|
77 |
+
|
78 |
+
article_data = extract_article_content(url)
|
79 |
+
if article_data:
|
80 |
+
articles.append(article_data)
|
81 |
+
|
82 |
+
time.sleep(1)
|
83 |
+
|
84 |
+
while len(articles) < num_articles:
|
85 |
+
additional_urls = search_news(company_name, num_articles=10)
|
86 |
+
for url in additional_urls:
|
87 |
+
if len(articles) >= num_articles:
|
88 |
+
break
|
89 |
+
article_data = extract_article_content(url)
|
90 |
+
if article_data:
|
91 |
+
articles.append(article_data)
|
92 |
+
time.sleep(1)
|
93 |
+
|
94 |
+
os.makedirs("Company", exist_ok=True)
|
95 |
+
file_path = os.path.join("Company", f"{company_name}.json")
|
96 |
+
|
97 |
+
with open(file_path, "w", encoding="utf-8") as json_file:
|
98 |
+
json.dump(articles, json_file, ensure_ascii=False, indent=4)
|
99 |
+
|
100 |
+
return file_path
|
101 |
+
|
102 |
+
def sentiment_analysis_model(text):
|
103 |
+
text = text[:510]
|
104 |
+
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
105 |
+
result = classifier(text)[0]
|
106 |
+
label_mapping = {
|
107 |
+
"LABEL_0": "Negative",
|
108 |
+
"LABEL_1": "Neutral",
|
109 |
+
"LABEL_2": "Positive"
|
110 |
+
}
|
111 |
+
sentiment = label_mapping.get(result["label"], "Unknown")
|
112 |
+
print({"sentiment": sentiment, "score": result["score"]})
|
113 |
+
return {"sentiment": sentiment}
|
114 |
+
|
115 |
+
def news_summarization(ARTICLE):
|
116 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
117 |
+
summary = summarizer(ARTICLE, max_length=57)
|
118 |
+
return summary[0]['summary_text']
|
119 |
+
|
120 |
+
# def audio_output(text):
|
121 |
+
# model = VitsModel.from_pretrained("facebook/mms-tts-hin")
|
122 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
123 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
124 |
+
# with torch.no_grad():
|
125 |
+
# output = model(**inputs).waveform
|
126 |
+
# waveform = output.squeeze().cpu().numpy()
|
127 |
+
# sample_rate = 16000
|
128 |
+
# sf.write("output.wav", waveform, sample_rate)
|
129 |
+
|
130 |
+
def audio_output(text, output_file="output.wav"):
|
131 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
132 |
+
|
133 |
+
try:
|
134 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-hin").to(device)
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
136 |
+
|
137 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
138 |
+
|
139 |
+
with torch.no_grad():
|
140 |
+
output = model(**inputs).waveform
|
141 |
+
waveform = output.squeeze().cpu().numpy()
|
142 |
+
|
143 |
+
sample_rate = 16000
|
144 |
+
sf.write(output_file, waveform, sample_rate)
|
145 |
+
if device == "cuda":
|
146 |
+
torch.cuda.empty_cache()
|
147 |
+
|
148 |
+
del model
|
149 |
+
del inputs
|
150 |
+
del output
|
151 |
+
del waveform
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
print(f"Error generating audio: {str(e)}")
|
155 |
+
|
156 |
+
def Topic_finder(text):
|
157 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
|
159 |
+
|
160 |
+
topic_model = BERTopic.load("ctam8736/bertopic-20-newsgroups")
|
161 |
+
topic_model.embedding_model = embedding_model
|
162 |
+
embeddings = embedding_model.encode([text])
|
163 |
+
topic, _ = topic_model.transform([text], embeddings=embeddings)
|
164 |
+
words = topic_model.get_topic(topic[0])
|
165 |
+
related_words = [word for word, _ in words]
|
166 |
+
return related_words
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|