Upload 3 files
Browse files- app.py +542 -0
- requirements.txt +16 -0
- utils.py +170 -0
app.py
ADDED
|
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import json
|
| 2 |
+
# import os
|
| 3 |
+
# from utils import save_company_news
|
| 4 |
+
# from utils import sentiment_analysis_model
|
| 5 |
+
# from utils import news_summarization, audio_output, Topic_finder
|
| 6 |
+
# from collections import Counter
|
| 7 |
+
# import time
|
| 8 |
+
# import re
|
| 9 |
+
# from deep_translator import GoogleTranslator
|
| 10 |
+
# from pydub import AudioSegment
|
| 11 |
+
# import gc
|
| 12 |
+
# import torch
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# print("Company News Summarization")
|
| 16 |
+
|
| 17 |
+
# company_name = input("Enter Company Name: ")
|
| 18 |
+
|
| 19 |
+
# if company_name:
|
| 20 |
+
# file_path = save_company_news(company_name)
|
| 21 |
+
|
| 22 |
+
# if os.path.exists(file_path):
|
| 23 |
+
# with open(file_path, "r", encoding="utf-8") as file:
|
| 24 |
+
# articles = json.load(file)
|
| 25 |
+
|
| 26 |
+
# for article in articles:
|
| 27 |
+
# print(f"\nTitle: {article['title']}")
|
| 28 |
+
# print(f"Content: {article['content'][:100]}...")
|
| 29 |
+
# print(f"Read more: {article['url']}")
|
| 30 |
+
|
| 31 |
+
# del articles
|
| 32 |
+
# gc.collect()
|
| 33 |
+
# else:
|
| 34 |
+
# print("Failed to fetch news. Try again.")
|
| 35 |
+
# else:
|
| 36 |
+
# print("Please enter a company name.")
|
| 37 |
+
|
| 38 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 39 |
+
# data = json.load(file)
|
| 40 |
+
|
| 41 |
+
# for article in data:
|
| 42 |
+
# topics = Topic_finder(article['title'])
|
| 43 |
+
|
| 44 |
+
# sentiment = sentiment_analysis_model(article['content'])
|
| 45 |
+
# article["sentiment"] = sentiment['sentiment']
|
| 46 |
+
|
| 47 |
+
# del sentiment
|
| 48 |
+
# gc.collect()
|
| 49 |
+
|
| 50 |
+
# summary = news_summarization(article["content"])
|
| 51 |
+
# article["summary"] = summary
|
| 52 |
+
|
| 53 |
+
# article["topics"] = topics
|
| 54 |
+
|
| 55 |
+
# if torch.cuda.is_available():
|
| 56 |
+
# torch.cuda.empty_cache()
|
| 57 |
+
|
| 58 |
+
# gc.collect()
|
| 59 |
+
|
| 60 |
+
# with open(f"Company/{company_name}.json", "w", encoding="utf-8") as file:
|
| 61 |
+
# json.dump(data, file, indent=4)
|
| 62 |
+
|
| 63 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 64 |
+
# articles = json.load(file)
|
| 65 |
+
|
| 66 |
+
# sentiment_counts = Counter(article["sentiment"] for article in articles)
|
| 67 |
+
|
| 68 |
+
# print("Sentiment Counts:")
|
| 69 |
+
# print("Positive:", sentiment_counts.get("Positive", 0))
|
| 70 |
+
# print("Negative:", sentiment_counts.get("Negative", 0))
|
| 71 |
+
# print("Neutral:", sentiment_counts.get("Neutral", 0))
|
| 72 |
+
|
| 73 |
+
# del articles
|
| 74 |
+
# del sentiment_counts
|
| 75 |
+
# gc.collect()
|
| 76 |
+
|
| 77 |
+
# with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 78 |
+
# data = json.load(file)
|
| 79 |
+
|
| 80 |
+
# translator = GoogleTranslator(source="en", target="hi")
|
| 81 |
+
|
| 82 |
+
# audio_folder = "audio"
|
| 83 |
+
# os.makedirs(audio_folder, exist_ok=True)
|
| 84 |
+
|
| 85 |
+
# for file in os.listdir(audio_folder):
|
| 86 |
+
# file_path = os.path.join(audio_folder, file)
|
| 87 |
+
# if os.path.isfile(file_path):
|
| 88 |
+
# os.remove(file_path)
|
| 89 |
+
|
| 90 |
+
# text_data = ""
|
| 91 |
+
# audio_files = []
|
| 92 |
+
|
| 93 |
+
# def split_text(text, max_length=4500):
|
| 94 |
+
# sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 95 |
+
# chunks = []
|
| 96 |
+
# current_chunk = ""
|
| 97 |
+
|
| 98 |
+
# for sentence in sentences:
|
| 99 |
+
# if len(current_chunk) + len(sentence) + 1 <= max_length:
|
| 100 |
+
# current_chunk += " " + sentence if current_chunk else sentence
|
| 101 |
+
# else:
|
| 102 |
+
# chunks.append(current_chunk)
|
| 103 |
+
# current_chunk = sentence
|
| 104 |
+
|
| 105 |
+
# if current_chunk:
|
| 106 |
+
# chunks.append(current_chunk)
|
| 107 |
+
|
| 108 |
+
# return chunks
|
| 109 |
+
|
| 110 |
+
# for i, article in enumerate(data, start=1):
|
| 111 |
+
# title_translated = translator.translate(article['title'])
|
| 112 |
+
|
| 113 |
+
# content_chunks = split_text(article['content'])
|
| 114 |
+
# translated_chunks = []
|
| 115 |
+
|
| 116 |
+
# for chunk in content_chunks:
|
| 117 |
+
# try:
|
| 118 |
+
# translated_chunk = translator.translate(chunk)
|
| 119 |
+
# translated_chunks.append(translated_chunk)
|
| 120 |
+
# time.sleep(0.5)
|
| 121 |
+
# except Exception as e:
|
| 122 |
+
# print(f"Error translating chunk: {str(e)}")
|
| 123 |
+
# translated_chunks.append(f"Translation error: {str(e)}")
|
| 124 |
+
|
| 125 |
+
# content_translated = " ".join(translated_chunks)
|
| 126 |
+
|
| 127 |
+
# del content_chunks
|
| 128 |
+
# gc.collect()
|
| 129 |
+
|
| 130 |
+
# article_text = (f"अब, आप लेख संख्या {i} सुन रहे हैं जिसका शीर्षक है: {title_translated}\n"
|
| 131 |
+
# f"अब, आप लेख संख्या {i} की सामग्री सुन रहे हैं।\n"
|
| 132 |
+
# f"सामग्री: {content_translated}\n\n")
|
| 133 |
+
|
| 134 |
+
# text_data += article_text
|
| 135 |
+
|
| 136 |
+
# audio_file = f"{audio_folder}/article_{i}.mp3"
|
| 137 |
+
# audio_output(article_text, audio_file)
|
| 138 |
+
# audio_files.append(audio_file)
|
| 139 |
+
|
| 140 |
+
# del article_text
|
| 141 |
+
# del content_translated
|
| 142 |
+
# del translated_chunks
|
| 143 |
+
# gc.collect()
|
| 144 |
+
|
| 145 |
+
# if torch.cuda.is_available():
|
| 146 |
+
# torch.cuda.empty_cache()
|
| 147 |
+
|
| 148 |
+
# time.sleep(1)
|
| 149 |
+
|
| 150 |
+
# output_file = f"Company/{company_name}_translated.txt"
|
| 151 |
+
# with open(output_file, "w", encoding="utf-8") as file:
|
| 152 |
+
# file.write(text_data)
|
| 153 |
+
|
| 154 |
+
# del text_data
|
| 155 |
+
# gc.collect()
|
| 156 |
+
|
| 157 |
+
# def combine_audio_files(audio_folder, output_file):
|
| 158 |
+
# try:
|
| 159 |
+
# print(f"Combining audio files from {audio_folder}...")
|
| 160 |
+
# audio_files = [f for f in os.listdir(audio_folder) if f.endswith('.mp3') and f != os.path.basename(output_file)]
|
| 161 |
+
|
| 162 |
+
# if not audio_files:
|
| 163 |
+
# print("No audio files found to combine.")
|
| 164 |
+
# return False
|
| 165 |
+
|
| 166 |
+
# audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
| 167 |
+
# print(f"Found {len(audio_files)} audio files to combine.")
|
| 168 |
+
|
| 169 |
+
# combined = AudioSegment.empty()
|
| 170 |
+
|
| 171 |
+
# for file in audio_files:
|
| 172 |
+
# file_path = os.path.join(audio_folder, file)
|
| 173 |
+
# try:
|
| 174 |
+
# audio = AudioSegment.from_mp3(file_path)
|
| 175 |
+
# combined += audio
|
| 176 |
+
# print(f"Added {file}")
|
| 177 |
+
|
| 178 |
+
# del audio
|
| 179 |
+
# gc.collect()
|
| 180 |
+
# except Exception as e:
|
| 181 |
+
# print(f"Error processing {file}: {str(e)}")
|
| 182 |
+
|
| 183 |
+
# combined.export(output_file, format="mp3")
|
| 184 |
+
# print(f"Successfully combined audio files into {output_file}")
|
| 185 |
+
|
| 186 |
+
# del combined
|
| 187 |
+
# gc.collect()
|
| 188 |
+
|
| 189 |
+
# return True
|
| 190 |
+
|
| 191 |
+
# except Exception as e:
|
| 192 |
+
# print(f"Error combining audio files: {str(e)}")
|
| 193 |
+
# return False
|
| 194 |
+
|
| 195 |
+
# audio_folder = "audio"
|
| 196 |
+
# output_file = "combined_news.mp3"
|
| 197 |
+
# combine_audio_files(audio_folder, output_file)
|
| 198 |
+
# print("Audio combining process completed!")
|
| 199 |
+
|
| 200 |
+
# if torch.cuda.is_available():
|
| 201 |
+
# torch.cuda.empty_cache()
|
| 202 |
+
|
| 203 |
+
# gc.collect()
|
| 204 |
+
|
| 205 |
+
import streamlit as st
|
| 206 |
+
import json
|
| 207 |
+
import os
|
| 208 |
+
from utils import save_company_news
|
| 209 |
+
from utils import sentiment_analysis_model
|
| 210 |
+
from utils import news_summarization, audio_output, Topic_finder
|
| 211 |
+
from collections import Counter
|
| 212 |
+
import time
|
| 213 |
+
import re
|
| 214 |
+
from deep_translator import GoogleTranslator
|
| 215 |
+
from pydub import AudioSegment
|
| 216 |
+
import gc
|
| 217 |
+
import torch
|
| 218 |
+
|
| 219 |
+
# Set page config
|
| 220 |
+
st.set_page_config(
|
| 221 |
+
page_title="Company News Summarization",
|
| 222 |
+
page_icon="📰",
|
| 223 |
+
layout="wide"
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Create necessary folders
|
| 227 |
+
os.makedirs("Company", exist_ok=True)
|
| 228 |
+
os.makedirs("audio", exist_ok=True)
|
| 229 |
+
|
| 230 |
+
def split_text(text, max_length=4500):
|
| 231 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
| 232 |
+
chunks = []
|
| 233 |
+
current_chunk = ""
|
| 234 |
+
|
| 235 |
+
for sentence in sentences:
|
| 236 |
+
if len(current_chunk) + len(sentence) + 1 <= max_length:
|
| 237 |
+
current_chunk += " " + sentence if current_chunk else sentence
|
| 238 |
+
else:
|
| 239 |
+
chunks.append(current_chunk)
|
| 240 |
+
current_chunk = sentence
|
| 241 |
+
|
| 242 |
+
if current_chunk:
|
| 243 |
+
chunks.append(current_chunk)
|
| 244 |
+
|
| 245 |
+
return chunks
|
| 246 |
+
|
| 247 |
+
def combine_audio_files(audio_folder, output_file):
|
| 248 |
+
try:
|
| 249 |
+
st.info(f"Combining audio files from {audio_folder}...")
|
| 250 |
+
audio_files = [f for f in os.listdir(audio_folder) if f.endswith('.mp3') and f != os.path.basename(output_file)]
|
| 251 |
+
|
| 252 |
+
if not audio_files:
|
| 253 |
+
st.warning("No audio files found to combine.")
|
| 254 |
+
return False
|
| 255 |
+
|
| 256 |
+
audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
| 257 |
+
st.info(f"Found {len(audio_files)} audio files to combine.")
|
| 258 |
+
|
| 259 |
+
combined = AudioSegment.empty()
|
| 260 |
+
|
| 261 |
+
for file in audio_files:
|
| 262 |
+
file_path = os.path.join(audio_folder, file)
|
| 263 |
+
try:
|
| 264 |
+
audio = AudioSegment.from_mp3(file_path)
|
| 265 |
+
combined += audio
|
| 266 |
+
|
| 267 |
+
del audio
|
| 268 |
+
gc.collect()
|
| 269 |
+
except Exception as e:
|
| 270 |
+
st.error(f"Error processing {file}: {str(e)}")
|
| 271 |
+
|
| 272 |
+
combined.export(output_file, format="mp3")
|
| 273 |
+
st.success(f"Successfully combined audio files into {output_file}")
|
| 274 |
+
|
| 275 |
+
del combined
|
| 276 |
+
gc.collect()
|
| 277 |
+
|
| 278 |
+
return True
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
st.error(f"Error combining audio files: {str(e)}")
|
| 282 |
+
return False
|
| 283 |
+
|
| 284 |
+
def process_company_news(company_name):
|
| 285 |
+
with st.spinner("Fetching company news..."):
|
| 286 |
+
file_path = save_company_news(company_name)
|
| 287 |
+
|
| 288 |
+
if not os.path.exists(file_path):
|
| 289 |
+
st.error("Failed to fetch news. Try again.")
|
| 290 |
+
return False
|
| 291 |
+
|
| 292 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
| 293 |
+
articles = json.load(file)
|
| 294 |
+
|
| 295 |
+
st.success(f"Found {len(articles)} articles for {company_name}")
|
| 296 |
+
|
| 297 |
+
# Display a preview of the articles
|
| 298 |
+
with st.expander("Preview Articles"):
|
| 299 |
+
for article in articles:
|
| 300 |
+
st.subheader(article['title'])
|
| 301 |
+
st.write(f"{article['content'][:100]}...")
|
| 302 |
+
st.write(f"[Read more]({article['url']})")
|
| 303 |
+
|
| 304 |
+
del articles
|
| 305 |
+
gc.collect()
|
| 306 |
+
|
| 307 |
+
with st.spinner("Analyzing sentiment, extracting topics, and generating summaries..."):
|
| 308 |
+
progress_bar = st.progress(0)
|
| 309 |
+
|
| 310 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 311 |
+
data = json.load(file)
|
| 312 |
+
|
| 313 |
+
total_articles = len(data)
|
| 314 |
+
|
| 315 |
+
for i, article in enumerate(data):
|
| 316 |
+
topics = Topic_finder(article['title'])
|
| 317 |
+
|
| 318 |
+
sentiment = sentiment_analysis_model(article['content'])
|
| 319 |
+
article["sentiment"] = sentiment['sentiment']
|
| 320 |
+
|
| 321 |
+
del sentiment
|
| 322 |
+
gc.collect()
|
| 323 |
+
|
| 324 |
+
summary = news_summarization(article["content"])
|
| 325 |
+
article["summary"] = summary
|
| 326 |
+
|
| 327 |
+
article["topics"] = topics
|
| 328 |
+
|
| 329 |
+
if torch.cuda.is_available():
|
| 330 |
+
torch.cuda.empty_cache()
|
| 331 |
+
|
| 332 |
+
gc.collect()
|
| 333 |
+
progress_bar.progress((i + 1) / total_articles)
|
| 334 |
+
|
| 335 |
+
with open(f"Company/{company_name}.json", "w", encoding="utf-8") as file:
|
| 336 |
+
json.dump(data, file, indent=4)
|
| 337 |
+
|
| 338 |
+
with st.spinner("Counting sentiment..."):
|
| 339 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 340 |
+
articles = json.load(file)
|
| 341 |
+
|
| 342 |
+
sentiment_counts = Counter(article["sentiment"] for article in articles)
|
| 343 |
+
|
| 344 |
+
st.write("### Sentiment Analysis")
|
| 345 |
+
col1, col2, col3 = st.columns(3)
|
| 346 |
+
col1.metric("Positive", sentiment_counts.get("Positive", 0))
|
| 347 |
+
col2.metric("Negative", sentiment_counts.get("Negative", 0))
|
| 348 |
+
col3.metric("Neutral", sentiment_counts.get("Neutral", 0))
|
| 349 |
+
|
| 350 |
+
del articles
|
| 351 |
+
del sentiment_counts
|
| 352 |
+
gc.collect()
|
| 353 |
+
|
| 354 |
+
with st.spinner("Translating content and generating audio..."):
|
| 355 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 356 |
+
data = json.load(file)
|
| 357 |
+
|
| 358 |
+
translator = GoogleTranslator(source="en", target="hi")
|
| 359 |
+
|
| 360 |
+
audio_folder = "audio"
|
| 361 |
+
os.makedirs(audio_folder, exist_ok=True)
|
| 362 |
+
|
| 363 |
+
# Clear previous audio files
|
| 364 |
+
for file in os.listdir(audio_folder):
|
| 365 |
+
file_path = os.path.join(audio_folder, file)
|
| 366 |
+
if os.path.isfile(file_path):
|
| 367 |
+
os.remove(file_path)
|
| 368 |
+
|
| 369 |
+
text_data = ""
|
| 370 |
+
audio_files = []
|
| 371 |
+
|
| 372 |
+
progress_bar = st.progress(0)
|
| 373 |
+
|
| 374 |
+
for i, article in enumerate(data, start=1):
|
| 375 |
+
title_translated = translator.translate(article['title'])
|
| 376 |
+
|
| 377 |
+
content_chunks = split_text(article['content'])
|
| 378 |
+
translated_chunks = []
|
| 379 |
+
|
| 380 |
+
for chunk in content_chunks:
|
| 381 |
+
try:
|
| 382 |
+
translated_chunk = translator.translate(chunk)
|
| 383 |
+
translated_chunks.append(translated_chunk)
|
| 384 |
+
time.sleep(0.5)
|
| 385 |
+
except Exception as e:
|
| 386 |
+
st.error(f"Error translating chunk: {str(e)}")
|
| 387 |
+
translated_chunks.append(f"Translation error: {str(e)}")
|
| 388 |
+
|
| 389 |
+
content_translated = " ".join(translated_chunks)
|
| 390 |
+
|
| 391 |
+
del content_chunks
|
| 392 |
+
gc.collect()
|
| 393 |
+
|
| 394 |
+
article_text = (f"अब, आप लेख संख्या {i} सुन रहे हैं जिसका शीर्षक है: {title_translated}\n"
|
| 395 |
+
f"अब, आप लेख संख्या {i} की सामग्री सुन रहे हैं।\n"
|
| 396 |
+
f"सामग्री: {content_translated}\n\n")
|
| 397 |
+
|
| 398 |
+
text_data += article_text
|
| 399 |
+
|
| 400 |
+
audio_file = f"{audio_folder}/article_{i}.mp3"
|
| 401 |
+
audio_output(article_text, audio_file)
|
| 402 |
+
audio_files.append(audio_file)
|
| 403 |
+
|
| 404 |
+
del article_text
|
| 405 |
+
del content_translated
|
| 406 |
+
del translated_chunks
|
| 407 |
+
gc.collect()
|
| 408 |
+
|
| 409 |
+
if torch.cuda.is_available():
|
| 410 |
+
torch.cuda.empty_cache()
|
| 411 |
+
|
| 412 |
+
progress_bar.progress(i / len(data))
|
| 413 |
+
time.sleep(1)
|
| 414 |
+
|
| 415 |
+
output_file = f"Company/{company_name}_translated.txt"
|
| 416 |
+
with open(output_file, "w", encoding="utf-8") as file:
|
| 417 |
+
file.write(text_data)
|
| 418 |
+
|
| 419 |
+
del text_data
|
| 420 |
+
gc.collect()
|
| 421 |
+
|
| 422 |
+
with st.spinner("Combining audio files..."):
|
| 423 |
+
output_file = "combined_news.mp3"
|
| 424 |
+
combine_success = combine_audio_files(audio_folder, output_file)
|
| 425 |
+
|
| 426 |
+
if combine_success:
|
| 427 |
+
st.success("Audio combining process completed!")
|
| 428 |
+
else:
|
| 429 |
+
st.error("Failed to combine audio files.")
|
| 430 |
+
|
| 431 |
+
if torch.cuda.is_available():
|
| 432 |
+
torch.cuda.empty_cache()
|
| 433 |
+
|
| 434 |
+
gc.collect()
|
| 435 |
+
|
| 436 |
+
return True
|
| 437 |
+
|
| 438 |
+
# Main app interface
|
| 439 |
+
st.title("Company News Summarization and Audio Generation")
|
| 440 |
+
|
| 441 |
+
with st.sidebar:
|
| 442 |
+
st.header("Enter Company Details")
|
| 443 |
+
company_name = st.text_input("Company Name")
|
| 444 |
+
process_button = st.button("Process Company News", type="primary")
|
| 445 |
+
|
| 446 |
+
# Process data when button is clicked
|
| 447 |
+
if process_button and company_name:
|
| 448 |
+
success = process_company_news(company_name)
|
| 449 |
+
if success:
|
| 450 |
+
st.session_state.processing_complete = True
|
| 451 |
+
st.session_state.company_name = company_name
|
| 452 |
+
elif process_button and not company_name:
|
| 453 |
+
st.error("Please enter a company name.")
|
| 454 |
+
|
| 455 |
+
# Show results after processing
|
| 456 |
+
if 'processing_complete' in st.session_state and st.session_state.processing_complete:
|
| 457 |
+
company_name = st.session_state.company_name
|
| 458 |
+
|
| 459 |
+
st.header(f"Results for {company_name}")
|
| 460 |
+
|
| 461 |
+
# Create tabs for different outputs
|
| 462 |
+
tab1, tab2, tab3 = st.tabs(["Summary", "Translated Text", "Audio"])
|
| 463 |
+
|
| 464 |
+
with tab1:
|
| 465 |
+
st.subheader("News Summary")
|
| 466 |
+
try:
|
| 467 |
+
with open(f"Company/{company_name}.json", "r", encoding="utf-8") as file:
|
| 468 |
+
articles = json.load(file)
|
| 469 |
+
|
| 470 |
+
for i, article in enumerate(articles, 1):
|
| 471 |
+
with st.expander(f"Article {i}: {article['title']}"):
|
| 472 |
+
st.write(f"**Summary:** {article['summary']}")
|
| 473 |
+
st.write(f"**Sentiment:** {article['sentiment']}")
|
| 474 |
+
st.write(f"**Topics:** {', '.join(article['topics'])}")
|
| 475 |
+
st.write(f"**URL:** {article['url']}")
|
| 476 |
+
except Exception as e:
|
| 477 |
+
st.error(f"Error loading summary data: {str(e)}")
|
| 478 |
+
|
| 479 |
+
with tab2:
|
| 480 |
+
st.subheader("Translated Text (Hindi)")
|
| 481 |
+
try:
|
| 482 |
+
with open(f"Company/{company_name}_translated.txt", "r", encoding="utf-8") as file:
|
| 483 |
+
text_content = file.read()
|
| 484 |
+
st.download_button(
|
| 485 |
+
label="Download Translated Text",
|
| 486 |
+
data=text_content,
|
| 487 |
+
file_name=f"{company_name}_translated.txt",
|
| 488 |
+
mime="text/plain"
|
| 489 |
+
)
|
| 490 |
+
st.text_area("Content", text_content, height=400)
|
| 491 |
+
except Exception as e:
|
| 492 |
+
st.error(f"Error loading translated text: {str(e)}")
|
| 493 |
+
|
| 494 |
+
with tab3:
|
| 495 |
+
st.subheader("Audio Files")
|
| 496 |
+
|
| 497 |
+
st.write("### Combined Audio")
|
| 498 |
+
try:
|
| 499 |
+
with open("combined_news.mp3", "rb") as file:
|
| 500 |
+
combined_audio_bytes = file.read()
|
| 501 |
+
|
| 502 |
+
st.audio(combined_audio_bytes, format="audio/mp3")
|
| 503 |
+
st.download_button(
|
| 504 |
+
label="Download Combined Audio",
|
| 505 |
+
data=combined_audio_bytes,
|
| 506 |
+
file_name="combined_news.mp3",
|
| 507 |
+
mime="audio/mp3"
|
| 508 |
+
)
|
| 509 |
+
except Exception as e:
|
| 510 |
+
st.error(f"Error loading combined audio: {str(e)}")
|
| 511 |
+
|
| 512 |
+
st.write("### Individual Article Audio Files")
|
| 513 |
+
try:
|
| 514 |
+
audio_files = [f for f in os.listdir("audio") if f.endswith('.mp3')]
|
| 515 |
+
audio_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]) if x.split('_')[-1].split('.')[0].isdigit() else 0)
|
| 516 |
+
|
| 517 |
+
for audio_file in audio_files:
|
| 518 |
+
with st.expander(f"{audio_file}"):
|
| 519 |
+
with open(f"audio/{audio_file}", "rb") as file:
|
| 520 |
+
audio_bytes = file.read()
|
| 521 |
+
st.audio(audio_bytes, format="audio/mp3")
|
| 522 |
+
st.download_button(
|
| 523 |
+
label=f"Download {audio_file}",
|
| 524 |
+
data=audio_bytes,
|
| 525 |
+
file_name=audio_file,
|
| 526 |
+
mime="audio/mp3"
|
| 527 |
+
)
|
| 528 |
+
except Exception as e:
|
| 529 |
+
st.error(f"Error loading individual audio files: {str(e)}")
|
| 530 |
+
|
| 531 |
+
# Instructions at the bottom
|
| 532 |
+
with st.expander("How to use this app"):
|
| 533 |
+
st.write("""
|
| 534 |
+
1. Enter the name of a company in the sidebar.
|
| 535 |
+
2. Click 'Process Company News' button to start the analysis.
|
| 536 |
+
3. Wait for the processing to complete (this may take some time depending on the number of articles).
|
| 537 |
+
4. View the results in the different tabs:
|
| 538 |
+
- Summary: See sentiment analysis, topics, and summaries of each article
|
| 539 |
+
- Translated Text: View the Hindi translation of all articles
|
| 540 |
+
- Audio: Listen to or download the audio files in Hindi
|
| 541 |
+
""")
|
| 542 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
requests==2.31.0
|
| 2 |
+
beautifulsoup4==4.12.2
|
| 3 |
+
newspaper3k==0.2.8
|
| 4 |
+
transformers
|
| 5 |
+
torch
|
| 6 |
+
scipy
|
| 7 |
+
numpy
|
| 8 |
+
pandas
|
| 9 |
+
torch
|
| 10 |
+
IPython
|
| 11 |
+
soundfile
|
| 12 |
+
deep_translator
|
| 13 |
+
pydub
|
| 14 |
+
bertopic
|
| 15 |
+
sentence_transformers
|
| 16 |
+
streamlit
|
utils.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from bs4 import BeautifulSoup
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import re
|
| 7 |
+
from newspaper import Article
|
| 8 |
+
from html import unescape
|
| 9 |
+
from transformers import pipeline,VitsModel, AutoTokenizer
|
| 10 |
+
import torch
|
| 11 |
+
import soundfile as sf
|
| 12 |
+
from bertopic import BERTopic
|
| 13 |
+
from sentence_transformers import SentenceTransformer
|
| 14 |
+
|
| 15 |
+
def clean_text(text):
|
| 16 |
+
text = unescape(text)
|
| 17 |
+
text = re.sub(r'\s+', ' ', text)
|
| 18 |
+
text = re.sub(r'<.*?>', '', text)
|
| 19 |
+
text = text.replace('\n', ' ').replace('\r', ' ')
|
| 20 |
+
return text.strip()
|
| 21 |
+
|
| 22 |
+
def search_news(company_name, num_articles=10):
|
| 23 |
+
query = f"{company_name} news".replace(' ', '+')
|
| 24 |
+
headers = {
|
| 25 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
|
| 26 |
+
}
|
| 27 |
+
search_url = f"https://www.google.com/search?q={query}&tbm=nws"
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
response = requests.get(search_url, headers=headers)
|
| 31 |
+
response.raise_for_status()
|
| 32 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 33 |
+
|
| 34 |
+
news_links = []
|
| 35 |
+
news_divs = soup.find_all('div', class_='SoaBEf')
|
| 36 |
+
|
| 37 |
+
for div in news_divs:
|
| 38 |
+
link_tag = div.find('a')
|
| 39 |
+
if link_tag:
|
| 40 |
+
href = link_tag.get('href')
|
| 41 |
+
if href.startswith('/url?q='):
|
| 42 |
+
url = href.split('/url?q=')[1].split('&sa=')[0]
|
| 43 |
+
news_links.append(url)
|
| 44 |
+
elif href.startswith('http'):
|
| 45 |
+
news_links.append(href)
|
| 46 |
+
|
| 47 |
+
return news_links
|
| 48 |
+
except Exception as e:
|
| 49 |
+
print(f"Error searching for news: {str(e)}")
|
| 50 |
+
return []
|
| 51 |
+
|
| 52 |
+
def extract_article_content(url):
|
| 53 |
+
try:
|
| 54 |
+
article = Article(url)
|
| 55 |
+
article.download()
|
| 56 |
+
article.parse()
|
| 57 |
+
|
| 58 |
+
if not article.text.strip():
|
| 59 |
+
raise ValueError("Empty article content")
|
| 60 |
+
|
| 61 |
+
return {
|
| 62 |
+
"title": clean_text(article.title),
|
| 63 |
+
"content": clean_text(article.text),
|
| 64 |
+
"url": url
|
| 65 |
+
}
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Skipping article {url} due to error: {str(e)}")
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
def save_company_news(company_name, num_articles=10):
|
| 71 |
+
news_urls = search_news(company_name)
|
| 72 |
+
articles = []
|
| 73 |
+
|
| 74 |
+
for url in news_urls:
|
| 75 |
+
if len(articles) >= num_articles:
|
| 76 |
+
break
|
| 77 |
+
|
| 78 |
+
article_data = extract_article_content(url)
|
| 79 |
+
if article_data:
|
| 80 |
+
articles.append(article_data)
|
| 81 |
+
|
| 82 |
+
time.sleep(1)
|
| 83 |
+
|
| 84 |
+
while len(articles) < num_articles:
|
| 85 |
+
additional_urls = search_news(company_name, num_articles=10)
|
| 86 |
+
for url in additional_urls:
|
| 87 |
+
if len(articles) >= num_articles:
|
| 88 |
+
break
|
| 89 |
+
article_data = extract_article_content(url)
|
| 90 |
+
if article_data:
|
| 91 |
+
articles.append(article_data)
|
| 92 |
+
time.sleep(1)
|
| 93 |
+
|
| 94 |
+
os.makedirs("Company", exist_ok=True)
|
| 95 |
+
file_path = os.path.join("Company", f"{company_name}.json")
|
| 96 |
+
|
| 97 |
+
with open(file_path, "w", encoding="utf-8") as json_file:
|
| 98 |
+
json.dump(articles, json_file, ensure_ascii=False, indent=4)
|
| 99 |
+
|
| 100 |
+
return file_path
|
| 101 |
+
|
| 102 |
+
def sentiment_analysis_model(text):
|
| 103 |
+
text = text[:510]
|
| 104 |
+
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment")
|
| 105 |
+
result = classifier(text)[0]
|
| 106 |
+
label_mapping = {
|
| 107 |
+
"LABEL_0": "Negative",
|
| 108 |
+
"LABEL_1": "Neutral",
|
| 109 |
+
"LABEL_2": "Positive"
|
| 110 |
+
}
|
| 111 |
+
sentiment = label_mapping.get(result["label"], "Unknown")
|
| 112 |
+
print({"sentiment": sentiment, "score": result["score"]})
|
| 113 |
+
return {"sentiment": sentiment}
|
| 114 |
+
|
| 115 |
+
def news_summarization(ARTICLE):
|
| 116 |
+
summarizer = pipeline("summarization", model="Falconsai/text_summarization")
|
| 117 |
+
summary = summarizer(ARTICLE, max_length=57)
|
| 118 |
+
return summary[0]['summary_text']
|
| 119 |
+
|
| 120 |
+
# def audio_output(text):
|
| 121 |
+
# model = VitsModel.from_pretrained("facebook/mms-tts-hin")
|
| 122 |
+
# tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
| 123 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
| 124 |
+
# with torch.no_grad():
|
| 125 |
+
# output = model(**inputs).waveform
|
| 126 |
+
# waveform = output.squeeze().cpu().numpy()
|
| 127 |
+
# sample_rate = 16000
|
| 128 |
+
# sf.write("output.wav", waveform, sample_rate)
|
| 129 |
+
|
| 130 |
+
def audio_output(text, output_file="output.wav"):
|
| 131 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 132 |
+
|
| 133 |
+
try:
|
| 134 |
+
model = VitsModel.from_pretrained("facebook/mms-tts-hin").to(device)
|
| 135 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-hin")
|
| 136 |
+
|
| 137 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 138 |
+
|
| 139 |
+
with torch.no_grad():
|
| 140 |
+
output = model(**inputs).waveform
|
| 141 |
+
waveform = output.squeeze().cpu().numpy()
|
| 142 |
+
|
| 143 |
+
sample_rate = 16000
|
| 144 |
+
sf.write(output_file, waveform, sample_rate)
|
| 145 |
+
if device == "cuda":
|
| 146 |
+
torch.cuda.empty_cache()
|
| 147 |
+
|
| 148 |
+
del model
|
| 149 |
+
del inputs
|
| 150 |
+
del output
|
| 151 |
+
del waveform
|
| 152 |
+
|
| 153 |
+
except Exception as e:
|
| 154 |
+
print(f"Error generating audio: {str(e)}")
|
| 155 |
+
|
| 156 |
+
def Topic_finder(text):
|
| 157 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 158 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
|
| 159 |
+
|
| 160 |
+
topic_model = BERTopic.load("ctam8736/bertopic-20-newsgroups")
|
| 161 |
+
topic_model.embedding_model = embedding_model
|
| 162 |
+
embeddings = embedding_model.encode([text])
|
| 163 |
+
topic, _ = topic_model.transform([text], embeddings=embeddings)
|
| 164 |
+
words = topic_model.get_topic(topic[0])
|
| 165 |
+
related_words = [word for word, _ in words]
|
| 166 |
+
return related_words
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|