import streamlit as st from transformers import pipeline # Initialize the summarizer pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") def summarize_text(text): summary = summarizer(text, max_length=150, min_length=50, do_sample=False) return summary[0]['summary_text'] # Streamlit app layout st.title("Text Summarizer") st.write("This app uses Hugging Face's transformers to summarize any text you provide.") # User input input_text = st.text_area("Enter Text to Summarize", height=200) if st.button("Summarize"): if input_text: with st.spinner("Summarizing..."): summary = summarize_text(input_text) st.subheader("Summary:") st.write(summary) else: st.warning("Please enter some text to summarize.")