Spaces:
Sleeping
Sleeping
Updated
Browse files
app.py
CHANGED
@@ -1,19 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
# Assume you have fine-tuned models and their names are listed here
|
5 |
available_models = [
|
6 |
"facebook/t5-small",
|
|
|
|
|
7 |
"google/pegasus-xsum",
|
|
|
8 |
"sshleifer/distilbart-cnn-12-6",
|
9 |
-
"
|
10 |
-
"
|
11 |
-
|
|
|
12 |
]
|
13 |
|
14 |
@st.cache_resource
|
15 |
def load_summarizer(model_name):
|
16 |
-
"""Loads the summarization pipeline for a given model."""
|
17 |
try:
|
18 |
summarizer = pipeline("summarization", model=model_name)
|
19 |
return summarizer
|
@@ -21,13 +24,13 @@ def load_summarizer(model_name):
|
|
21 |
st.error(f"Error loading model {model_name}: {e}")
|
22 |
return None
|
23 |
|
24 |
-
st.title("
|
25 |
|
26 |
text_to_summarize = st.text_area("Enter text to summarize:", height=300)
|
27 |
|
28 |
-
selected_model = st.selectbox("Choose a summarization model:", available_models)
|
29 |
|
30 |
-
|
31 |
max_length = st.sidebar.slider("Max Summary Length:", min_value=50, max_value=500, value=150)
|
32 |
min_length = st.sidebar.slider("Min Summary Length:", min_value=10, max_value=250, value=30)
|
33 |
temperature = st.sidebar.slider("Temperature (for sampling):", min_value=0.0, max_value=1.0, value=0.0, step=0.01, help="Higher values make the output more random.")
|
@@ -63,7 +66,8 @@ if st.button("Summarize"):
|
|
63 |
st.sidebar.header("About")
|
64 |
st.sidebar.info(
|
65 |
"This app uses the `transformers` library from Hugging Face "
|
66 |
-
"to perform text summarization. You can select from
|
67 |
-
"pre-trained
|
68 |
-
"the parameters in the sidebar to control the
|
|
|
69 |
)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
|
|
|
4 |
available_models = [
|
5 |
"facebook/t5-small",
|
6 |
+
"facebook/t5-base",
|
7 |
+
"facebook/t5-large",
|
8 |
"google/pegasus-xsum",
|
9 |
+
"google/pegasus-cnn_dailymail",
|
10 |
"sshleifer/distilbart-cnn-12-6",
|
11 |
+
"allenai/led-base-16384",
|
12 |
+
"google/mt5-small",
|
13 |
+
"google/mt5-base",
|
14 |
+
# Add more models as needed
|
15 |
]
|
16 |
|
17 |
@st.cache_resource
|
18 |
def load_summarizer(model_name):
|
19 |
+
"""Loads the summarization pipeline for a given model from Hugging Face."""
|
20 |
try:
|
21 |
summarizer = pipeline("summarization", model=model_name)
|
22 |
return summarizer
|
|
|
24 |
st.error(f"Error loading model {model_name}: {e}")
|
25 |
return None
|
26 |
|
27 |
+
st.title("Hugging Face Text Summarization App")
|
28 |
|
29 |
text_to_summarize = st.text_area("Enter text to summarize:", height=300)
|
30 |
|
31 |
+
selected_model = st.selectbox("Choose a summarization model from Hugging Face:", available_models)
|
32 |
|
33 |
+
st.sidebar.header("Summarization Parameters")
|
34 |
max_length = st.sidebar.slider("Max Summary Length:", min_value=50, max_value=500, value=150)
|
35 |
min_length = st.sidebar.slider("Min Summary Length:", min_value=10, max_value=250, value=30)
|
36 |
temperature = st.sidebar.slider("Temperature (for sampling):", min_value=0.0, max_value=1.0, value=0.0, step=0.01, help="Higher values make the output more random.")
|
|
|
66 |
st.sidebar.header("About")
|
67 |
st.sidebar.info(
|
68 |
"This app uses the `transformers` library from Hugging Face "
|
69 |
+
"to perform text summarization. You can select from a variety of "
|
70 |
+
"pre-trained models available on the Hugging Face Model Hub. "
|
71 |
+
"Experiment with the parameters in the sidebar to control the "
|
72 |
+
"summarization process."
|
73 |
)
|