File size: 806 Bytes
3ca9914
7192351
3ca9914
7192351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import streamlit as st
from transformers import pipeline

# Initialize the summarizer pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

def summarize_text(text):
    summary = summarizer(text, max_length=150, min_length=50, do_sample=False)
    return summary[0]['summary_text']

# Streamlit app layout
st.title("Text Summarizer")
st.write("This app uses Hugging Face's transformers to summarize any text you provide.")

# User input
input_text = st.text_area("Enter Text to Summarize", height=200)

if st.button("Summarize"):
    if input_text:
        with st.spinner("Summarizing..."):
            summary = summarize_text(input_text)
            st.subheader("Summary:")
            st.write(summary)
    else:
        st.warning("Please enter some text to summarize.")