Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,86 +1,86 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
-
import
|
| 4 |
from sentence_transformers import SentenceTransformer
|
| 5 |
-
from transformers import AutoTokenizer
|
| 6 |
-
from splade.models.transformer_rep import Splade
|
| 7 |
-
import pinecone
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
pinecone.init(api_key=api_key, environment='us-east1-gcp')
|
| 12 |
-
index_name = 'pubmed-splade'
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
sparse_model = Splade(sparse_model_id, agg='max').to(device)
|
| 29 |
-
sparse_model.eval()
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def encode(text: str):
|
| 36 |
-
# Dense vector
|
| 37 |
-
dense_vec = dense_model.encode(text).tolist()
|
| 38 |
-
|
| 39 |
-
# Sparse vector
|
| 40 |
-
input_ids = tokenizer(text, return_tensors='pt')
|
| 41 |
-
with torch.no_grad():
|
| 42 |
-
sparse_vec = sparse_model(d_kwargs=input_ids.to(device))['d_rep'].squeeze()
|
| 43 |
-
|
| 44 |
-
# Extract non-zero values and indices for sparse vector
|
| 45 |
-
indices = sparse_vec.nonzero().squeeze().cpu().tolist()
|
| 46 |
-
values = sparse_vec[indices].cpu().tolist()
|
| 47 |
-
|
| 48 |
-
sparse_dict = {"indices": indices, "values": values}
|
| 49 |
-
return dense_vec, sparse_dict
|
| 50 |
-
|
| 51 |
-
# Function for hybrid search scaling
|
| 52 |
-
def hybrid_scale(dense, sparse, alpha: float):
|
| 53 |
-
if alpha < 0 or alpha > 1:
|
| 54 |
-
raise ValueError("Alpha must be between 0 and 1")
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
return hdense, hsparse
|
| 63 |
-
|
| 64 |
-
# Streamlit UI
|
| 65 |
-
st.title("PubMed Search Application")
|
| 66 |
-
query = st.text_input("Enter your query:", "")
|
| 67 |
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
dense_vec, sparse_vec = encode(query)
|
| 74 |
-
|
| 75 |
-
# Scale vectors based on slider value
|
| 76 |
-
hdense, hsparse = hybrid_scale(dense_vec, sparse_vec, alpha)
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
+
from pinecone import Pinecone, ServerlessSpec
|
| 4 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Title of the Streamlit App
|
| 7 |
+
st.title("Pinecone Index Management with Streamlit")
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Function to initialize Pinecone
|
| 10 |
+
def initialize_pinecone():
|
| 11 |
+
api_key = os.getenv('PINECONE_API_KEY') # Get Pinecone API key from environment variable
|
| 12 |
+
if api_key:
|
| 13 |
+
# Initialize Pinecone client using the new class instance method
|
| 14 |
+
pc = Pinecone(api_key=api_key)
|
| 15 |
+
return pc
|
| 16 |
+
else:
|
| 17 |
+
st.error("Pinecone API key not found! Please set the PINECONE_API_KEY environment variable.")
|
| 18 |
+
return None
|
| 19 |
|
| 20 |
+
# Function to create or connect to an index
|
| 21 |
+
def create_or_connect_index(pc, index_name, dimension):
|
| 22 |
+
if index_name not in pc.list_indexes().names():
|
| 23 |
+
# Create index if it doesn't exist
|
| 24 |
+
pc.create_index(
|
| 25 |
+
name=index_name,
|
| 26 |
+
dimension=dimension,
|
| 27 |
+
metric='dotproduct', # Change this based on your use case
|
| 28 |
+
spec=ServerlessSpec(cloud='aws', region='us-west-2') # Change to your cloud provider and region
|
| 29 |
+
)
|
| 30 |
+
st.success(f"Created new index '{index_name}'")
|
| 31 |
+
else:
|
| 32 |
+
st.info(f"Index '{index_name}' already exists.")
|
| 33 |
+
# Connect to the index
|
| 34 |
+
index = pc.Index(index_name)
|
| 35 |
+
return index
|
| 36 |
|
| 37 |
+
# Function to encode query using sentence transformers model
|
| 38 |
+
def encode_query(model, query_text):
|
| 39 |
+
return model.encode(query_text).tolist()
|
| 40 |
|
| 41 |
+
# Initialize Pinecone
|
| 42 |
+
pc = initialize_pinecone()
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# If Pinecone initialized successfully, proceed with index management
|
| 45 |
+
if pc:
|
| 46 |
+
index_name = st.text_input("Enter Index Name", "my_index")
|
| 47 |
+
dimension = st.number_input("Enter Vector Dimension", min_value=1, value=768)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
# Button to create or connect to index
|
| 50 |
+
if st.button("Create or Connect to Index"):
|
| 51 |
+
index = create_or_connect_index(pc, index_name, dimension)
|
| 52 |
+
if index:
|
| 53 |
+
st.success(f"Successfully connected to index '{index_name}'")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
# Model for query encoding
|
| 56 |
+
model = SentenceTransformer('msmarco-bert-base-dot-v5')
|
| 57 |
|
| 58 |
+
# Query input
|
| 59 |
+
query_text = st.text_input("Enter a Query to Search", "Can clinicians use the PHQ-9 to assess depression?")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Button to encode query and search the Pinecone index
|
| 62 |
+
if st.button("Search Query"):
|
| 63 |
+
if query_text and index:
|
| 64 |
+
dense_vector = encode_query(model, query_text)
|
| 65 |
+
st.write(f"Encoded Query Vector: {dense_vector}")
|
| 66 |
+
|
| 67 |
+
# Search the index (sparse values can be added here as well)
|
| 68 |
+
results = index.query(
|
| 69 |
+
vector=dense_vector,
|
| 70 |
+
top_k=5,
|
| 71 |
+
include_metadata=True
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
st.write("Search Results:")
|
| 75 |
+
for match in results.matches:
|
| 76 |
+
st.write(f"ID: {match.id}, Score: {match.score}, Metadata: {match.metadata}")
|
| 77 |
+
else:
|
| 78 |
+
st.error("Please enter a query and ensure the index is initialized.")
|
| 79 |
+
|
| 80 |
+
# Option to delete index
|
| 81 |
+
if st.button("Delete Index"):
|
| 82 |
+
if pc and index_name in pc.list_indexes().names():
|
| 83 |
+
pc.delete_index(index_name)
|
| 84 |
+
st.success(f"Index '{index_name}' deleted successfully.")
|
| 85 |
+
else:
|
| 86 |
+
st.error("Index not found.")
|