shripadbhat commited on
Commit
e5f4b72
·
1 Parent(s): 7c2b679

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -11
app.py CHANGED
@@ -2,11 +2,15 @@ import gradio as gr
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
- from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
- model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
- tokenizer = AutoTokenizer.from_pretrained(model_name)
9
- model = AutoModelWithLMHead.from_pretrained(model_name)
 
 
 
 
10
 
11
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
12
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
@@ -34,14 +38,15 @@ def fetch_answers(question, clincal_note ):
34
  evidence_sentence = passage_sentences[i]
35
 
36
  model_input = f"question: {query} context: {evidence_sentence}"
37
- encoded_input = tokenizer([model_input],
38
- return_tensors='pt',
39
- max_length=512,
40
- truncation=True)
41
 
42
- output = model.generate(input_ids = encoded_input.input_ids,
43
- attention_mask = encoded_input.attention_mask)
44
- output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
 
45
  break
46
 
47
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
 
2
  import pysbd
3
  from transformers import pipeline
4
  from sentence_transformers import CrossEncoder
5
+ #from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
6
 
7
+ #model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
8
+ #tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ #model = AutoModelWithLMHead.from_pretrained(model_name)
10
+
11
+ from transformers import pipeline
12
+
13
+ text2text_generator = pipeline("text2text-generation")
14
 
15
  sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
16
  passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
 
38
  evidence_sentence = passage_sentences[i]
39
 
40
  model_input = f"question: {query} context: {evidence_sentence}"
41
+ #encoded_input = tokenizer([model_input],
42
+ # return_tensors='pt',
43
+ # max_length=512,
44
+ # truncation=True)
45
 
46
+ #output = model.generate(input_ids = encoded_input.input_ids,
47
+ # attention_mask = encoded_input.attention_mask)
48
+ #output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
49
+ output_answer = text2text_generator(model_input)['generated_text']
50
  break
51
 
52
  result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"