Spaces:
Runtime error
Runtime error
Commit
·
a5f44ac
1
Parent(s):
7ba3536
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,11 @@ import gradio as gr
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
7 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
@@ -21,15 +26,26 @@ def fetch_answers(question, clincal_note ):
|
|
21 |
for query, passage in top_5_query_paragraph_list:
|
22 |
passage_sentences = sentence_segmenter.segment(passage)
|
23 |
answer = qa_model(question = query, context = passage)['answer']
|
24 |
-
|
25 |
for i in range(len(passage_sentences)):
|
26 |
if answer.startswith('.') or answer.startswith(':'):
|
27 |
answer = answer[1:].strip()
|
28 |
if answer in passage_sentences[i]:
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
top_5_query_paragraph_answer_list += result_str
|
34 |
count+=1
|
35 |
|
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
+
|
7 |
+
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
10 |
|
11 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
12 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
|
|
26 |
for query, passage in top_5_query_paragraph_list:
|
27 |
passage_sentences = sentence_segmenter.segment(passage)
|
28 |
answer = qa_model(question = query, context = passage)['answer']
|
29 |
+
evidence_sentence = None
|
30 |
for i in range(len(passage_sentences)):
|
31 |
if answer.startswith('.') or answer.startswith(':'):
|
32 |
answer = answer[1:].strip()
|
33 |
if answer in passage_sentences[i]:
|
34 |
+
evidence_sentence = passage_sentences[i]
|
35 |
+
break
|
36 |
|
37 |
+
model_input = f"question: {query} context: {evidence_sentence}"
|
38 |
+
encoded_input = tokenizer([model_input],
|
39 |
+
return_tensors='pt',
|
40 |
+
max_length=512,
|
41 |
+
truncation=True)
|
42 |
+
|
43 |
+
output = model.generate(input_ids = encoded_input.input_ids,
|
44 |
+
attention_mask = encoded_input.attention_mask)
|
45 |
+
output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
46 |
+
|
47 |
+
result_str = "# RESULT NO: "+str(count)+ output_answer +"\n"
|
48 |
+
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|
49 |
top_5_query_paragraph_answer_list += result_str
|
50 |
count+=1
|
51 |
|