Spaces:
Runtime error
Runtime error
Commit
·
3d99012
1
Parent(s):
45e1422
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,15 @@ import gradio as gr
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
|
11 |
-
from transformers import pipeline
|
12 |
|
13 |
-
text2text_generator = pipeline("text2text-generation", model = "gpt2")
|
14 |
|
15 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
16 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
@@ -39,15 +39,15 @@ def fetch_answers(question, clincal_note ):
|
|
39 |
|
40 |
|
41 |
model_input = f"question: {query} context: {evidence_sentence}"
|
42 |
-
output_answer = text2text_generator(model_input)[0]['generated_text']
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
|
52 |
result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
|
53 |
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|
|
|
2 |
import pysbd
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import CrossEncoder
|
5 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline
|
6 |
|
7 |
+
model_name = "MaRiOrOsSi/t5-base-finetuned-question-answering"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelWithLMHead.from_pretrained(model_name)
|
10 |
|
11 |
+
#from transformers import pipeline
|
12 |
|
13 |
+
#text2text_generator = pipeline("text2text-generation", model = "gpt2")
|
14 |
|
15 |
sentence_segmenter = pysbd.Segmenter(language='en',clean=False)
|
16 |
passage_retreival_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
|
|
39 |
|
40 |
|
41 |
model_input = f"question: {query} context: {evidence_sentence}"
|
42 |
+
#output_answer = text2text_generator(model_input)[0]['generated_text']
|
43 |
+
encoded_input = tokenizer([model_input],
|
44 |
+
return_tensors='pt',
|
45 |
+
max_length=512,
|
46 |
+
truncation=True)
|
47 |
|
48 |
+
output = model.generate(input_ids = encoded_input.input_ids,
|
49 |
+
attention_mask = encoded_input.attention_mask)
|
50 |
+
output_answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
51 |
|
52 |
result_str = "# ANSWER "+str(count)+": "+ output_answer +"\n"
|
53 |
result_str = result_str + "REFERENCE: "+ evidence_sentence + "\n\n"
|