Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,101 +1,8 @@
|
|
1 |
-
|
2 |
-
import requests
|
3 |
-
from bs4 import BeautifulSoup
|
4 |
-
import json
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
def load_model():
|
10 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("shreyanshjha0709/watch-description-generator")
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained("shreyanshjha0709/watch-description-generator")
|
12 |
-
return model, tokenizer
|
13 |
|
14 |
-
model, tokenizer = load_model()
|
15 |
-
|
16 |
-
# Load the JSON file from a URL
|
17 |
-
@st.cache_data
|
18 |
-
def load_json_from_url(url):
|
19 |
-
response = requests.get(url)
|
20 |
-
return response.json()
|
21 |
-
|
22 |
-
# Provide your JSON URL here
|
23 |
-
json_url = "https://www.ethoswatches.com/feeds/holbox_ai.json"
|
24 |
-
data = load_json_from_url(json_url)
|
25 |
-
|
26 |
-
# Extract unique brands
|
27 |
-
brands = sorted(list(set([item["brand"] for item in data])))
|
28 |
-
|
29 |
-
# Function to scrape Ethos product description using the specified selector
|
30 |
-
def scrape_ethos_description(product_link):
|
31 |
-
try:
|
32 |
-
response = requests.get(product_link)
|
33 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
34 |
-
|
35 |
-
# Target the specific selector to extract the description
|
36 |
-
description = soup.select_one('#brand_collection > div > div.lHeight_100.spec_editorNotes > div > p:nth-child(5)')
|
37 |
-
if description:
|
38 |
-
return description.get_text(strip=True)
|
39 |
-
else:
|
40 |
-
return "No detailed description available from Ethos."
|
41 |
-
except Exception as e:
|
42 |
-
return f"Error fetching details from Ethos: {str(e)}"
|
43 |
-
|
44 |
-
# Streamlit UI
|
45 |
-
st.title("Watch Description Generator")
|
46 |
-
|
47 |
-
# Select brand
|
48 |
-
selected_brand = st.selectbox("Select a Brand", ["Select"] + brands)
|
49 |
-
|
50 |
-
# Filter watches and SKUs by the selected brand
|
51 |
-
if selected_brand != "Select":
|
52 |
-
watches = [item["name"] for item in data if item["brand"] == selected_brand]
|
53 |
-
skus = [item["sku"] for item in data if item["brand"] == selected_brand]
|
54 |
-
selected_watch = st.selectbox("Select Watch Name (Optional)", ["Select"] + watches)
|
55 |
-
selected_sku = st.selectbox("Select SKU (Optional)", ["Select"] + skus)
|
56 |
-
|
57 |
-
# Get the selected watch data from the JSON
|
58 |
-
watch_data = None
|
59 |
-
if selected_watch != "Select":
|
60 |
-
watch_data = next((item for item in data if item["name"] == selected_watch), None)
|
61 |
-
elif selected_sku != "Select":
|
62 |
-
watch_data = next((item for item in data if item["sku"] == selected_sku), None)
|
63 |
-
|
64 |
-
if watch_data:
|
65 |
-
# Display the image from the JSON
|
66 |
-
image_url = watch_data.get("image", None)
|
67 |
-
if image_url:
|
68 |
-
st.image(image_url, caption=f"{watch_data['name']} Image")
|
69 |
-
|
70 |
-
# Get the Ethos product link for web scraping
|
71 |
-
product_link = watch_data.get("url", None)
|
72 |
-
if product_link:
|
73 |
-
st.write(f"Fetching details from: [Product Page]({product_link})")
|
74 |
-
|
75 |
-
# Scrape Ethos product page for description
|
76 |
-
ethos_description = scrape_ethos_description(product_link)
|
77 |
-
st.write("### Ethos Product Description (Extracted)")
|
78 |
-
st.write(ethos_description)
|
79 |
-
else:
|
80 |
-
st.warning("No Ethos link available for this SKU.")
|
81 |
-
|
82 |
-
# Generate a watch description based on attributes and scraped content
|
83 |
-
attributes = {
|
84 |
-
"brand": watch_data["brand"],
|
85 |
-
"name": watch_data.get("name", "Unknown Watch"),
|
86 |
-
"sku": watch_data.get("sku", "Unknown SKU"),
|
87 |
-
"features": watch_data.get("features", "Unknown Features"),
|
88 |
-
"casesize": watch_data.get("casesize", "Unknown Case Size"),
|
89 |
-
"movement": watch_data.get("movement", "Unknown Movement"),
|
90 |
-
"gender": watch_data.get("gender", "Unknown Gender"),
|
91 |
-
"water_resistance": watch_data.get("water_resistance", "Unknown Water Resistance"),
|
92 |
-
"power_reserve": watch_data.get("power_reserve", "Unknown Power Reserve"),
|
93 |
-
"dial_color": watch_data.get("dial_color", "Unknown Dial Color"),
|
94 |
-
"strap_material": watch_data.get("strap_material", "Unknown Strap Material")
|
95 |
-
}
|
96 |
-
|
97 |
-
# Combine Ethos description and attributes into a prompt
|
98 |
-
input_text = f"""Generate a detailed 100-word description for the following watch:
|
99 |
Brand: {attributes['brand']}
|
100 |
Name: {attributes['name']}
|
101 |
SKU: {attributes['sku']}
|
@@ -111,55 +18,28 @@ Strap Material: {attributes['strap_material']}
|
|
111 |
Additional details from Ethos:
|
112 |
{ethos_description}
|
113 |
|
114 |
-
Description:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
st.write(description)
|
135 |
-
else:
|
136 |
-
st.warning("Please select a brand.")
|
137 |
|
138 |
-
#
|
139 |
-
st.
|
140 |
-
st.
|
141 |
-
"This app uses a fine-tuned AI model to generate descriptions for watches. "
|
142 |
-
"Select a brand and a watch to get started. The model will generate a unique "
|
143 |
-
"description based on the watch's attributes and additional details from the Ethos website."
|
144 |
-
)
|
145 |
|
146 |
-
#
|
147 |
-
st.markdown(
|
148 |
-
"""
|
149 |
-
<style>
|
150 |
-
.footer {
|
151 |
-
position: fixed;
|
152 |
-
left: 0;
|
153 |
-
bottom: 0;
|
154 |
-
width: 100%;
|
155 |
-
background-color: #f1f1f1;
|
156 |
-
color: black;
|
157 |
-
text-align: center;
|
158 |
-
}
|
159 |
-
</style>
|
160 |
-
<div class="footer">
|
161 |
-
<p>Developed with ❤️ by Shreyansh Jha</p>
|
162 |
-
</div>
|
163 |
-
""",
|
164 |
-
unsafe_allow_html=True
|
165 |
-
)
|
|
|
1 |
+
# ... (previous code remains the same)
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Combine Ethos description and attributes into a prompt
|
4 |
+
input_text = f"""Generate a detailed, luxurious 150-word description for the following watch, focusing on its craftsmanship, innovation, and design. Use a style similar to high-end watch editorials, highlighting the watch's unique features and its appeal to connoisseurs:
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
Brand: {attributes['brand']}
|
7 |
Name: {attributes['name']}
|
8 |
SKU: {attributes['sku']}
|
|
|
18 |
Additional details from Ethos:
|
19 |
{ethos_description}
|
20 |
|
21 |
+
Description:"""
|
22 |
+
|
23 |
+
# Tokenize input and generate description
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
|
25 |
+
outputs = model.generate(
|
26 |
+
**inputs,
|
27 |
+
max_length=300, # Increased to allow for longer descriptions
|
28 |
+
min_length=200, # Ensure a minimum length
|
29 |
+
num_return_sequences=1,
|
30 |
+
temperature=0.8, # Slightly increased for more creativity
|
31 |
+
top_k=50,
|
32 |
+
top_p=0.95,
|
33 |
+
do_sample=True,
|
34 |
+
repetition_penalty=1.2, # Prevent repetition
|
35 |
+
length_penalty=1.5 # Encourage longer outputs
|
36 |
+
)
|
|
|
37 |
|
38 |
+
# Decode generated text
|
39 |
+
description = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
40 |
|
41 |
+
# Display the final generated description
|
42 |
+
st.write("### Final Generated Description")
|
43 |
+
st.write(description)
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
# ... (rest of the code remains the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|