Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import requests | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Load model and tokenizer | |
| def load_model(): | |
| model = AutoModelForSeq2SeqLM.from_pretrained("shreyanshjha0709/watch-description-generator") | |
| tokenizer = AutoTokenizer.from_pretrained("shreyanshjha0709/watch-description-generator") | |
| return model, tokenizer | |
| model, tokenizer = load_model() | |
| # Load the JSON file from a URL | |
| def load_json_from_url(url): | |
| response = requests.get(url) | |
| return response.json() | |
| # Provide your JSON URL here | |
| json_url = "https://www.ethoswatches.com/feeds/holbox_ai.json" | |
| data = load_json_from_url(json_url) | |
| # Extract unique brands | |
| brands = sorted(set(item["brand"] for item in data)) | |
| # Streamlit UI | |
| st.title("Watch Description Generator") | |
| # Select brand | |
| selected_brand = st.selectbox("Select a Brand", ["Select"] + brands) | |
| if selected_brand != "Select": | |
| watches = [item["name"] for item in data if item["brand"] == selected_brand] | |
| skus = [item["sku"] for item in data if item["brand"] == selected_brand] | |
| selected_watch = st.selectbox("Select Watch Name (Optional)", ["Select"] + watches) | |
| selected_sku = st.selectbox("Select SKU (Optional)", ["Select"] + skus) | |
| # Get the selected watch data from the JSON | |
| watch_data = next((item for item in data if item["name"] == selected_watch or item["sku"] == selected_sku), None) | |
| if watch_data: | |
| # Display the image from the JSON | |
| if image_url := watch_data.get("image"): | |
| st.image(image_url, caption=f"{watch_data['name']} Image") | |
| # Attributes without price | |
| attributes = { | |
| "brand": watch_data["brand"], | |
| "name": watch_data.get("name", "Unknown Watch"), | |
| "sku": watch_data.get("sku", "Unknown SKU"), | |
| "features": watch_data.get("features", "Unknown Features"), | |
| "casesize": watch_data.get("casesize", "Unknown Case Size"), | |
| "movement": watch_data.get("movement", "Unknown Movement"), | |
| "gender": watch_data.get("gender", "Unknown Gender"), | |
| "water_resistance": watch_data.get("water_resistance", "Unknown Water Resistance"), | |
| "power_reserve": watch_data.get("power_reserve", "Unknown Power Reserve"), | |
| "dial_color": watch_data.get("dial_color", "Unknown Dial Color"), | |
| "strap_material": watch_data.get("strap_material", "Unknown Strap Material") | |
| } | |
| # Create a detailed description prompt | |
| input_text = f"""Generate a detailed 200-word description for the following watch: | |
| Brand: {attributes['brand']} | |
| Name: {attributes['name']} | |
| SKU: {attributes['sku']} | |
| Features: {attributes['features']} | |
| Case Size: {attributes['casesize']} | |
| Movement: {attributes['movement']} | |
| Gender: {attributes['gender']} | |
| Water Resistance: {attributes['water_resistance']} | |
| Power Reserve: {attributes['power_reserve']} | |
| Dial Color: {attributes['dial_color']} | |
| Strap Material: {attributes['strap_material']} | |
| Description: Provide a luxurious, detailed description focusing on the craftsmanship, innovation, and design. Highlight the unique features and selling points of this watch. Use vivid language to paint a picture of the watch's appearance and functionality. Discuss how this watch stands out in the {attributes['brand']} collection and why it would appeal to watch enthusiasts.""" | |
| # Tokenize input and generate description | |
| inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True) | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=300, # Increased to allow for longer descriptions | |
| num_return_sequences=1, | |
| temperature=0.8, | |
| top_k=50, | |
| top_p=0.95, | |
| do_sample=True, | |
| repetition_penalty=1.2, | |
| no_repeat_ngram_size=3 # Prevent repetition of 3-gram phrases | |
| ) | |
| # Decode generated text | |
| description = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Display the result | |
| st.write("### Generated Description") | |
| st.write(description) | |
| # Add word count | |
| word_count = len(description.split()) | |
| st.write(f"Word count: {word_count}") | |
| else: | |
| st.warning("Please select a brand.") | |
| # Add some information about the app | |
| st.sidebar.title("About") | |
| st.sidebar.info( | |
| "This app uses a fine-tuned AI model to generate descriptions for watches. " | |
| "Select a brand and a watch to get started. The model will generate a unique " | |
| "description based on the watch's attributes." | |
| ) | |
| # Add a footer | |
| st.markdown( | |
| """ | |
| <style> | |
| .footer { | |
| position: fixed; | |
| left: 0; | |
| bottom: 0; | |
| width: 100%; | |
| background-color: #f1f1f1; | |
| color: black; | |
| text-align: center; | |
| } | |
| </style> | |
| <div class="footer"> | |
| <p>Developed with ❤️ by Shreyansh Jha</p> | |
| </div> | |
| """, | |
| unsafe_allow_html=True | |
| ) |