import gradio as gr from transformers import AutoModelForSeq2SeqLM from transformers import DataCollatorForSeq2Seq, AutoConfig @spaces.GPU(duration=120) def run_train(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad): model = AutoModelForSeq2SeqLM.from_pretrained(model_name) return "WORKS" # Create Gradio interface try: iface = gr.Interface( fn=run_train, inputs=[ gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"), gr.Textbox(label="Dataset Name (e.g., 'imdb')"), gr.Textbox(label="HF hub to push to after training"), gr.Textbox(label="HF API token"), gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1), gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1), gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1), gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1), ], outputs="text", title="Fine-Tune Hugging Face Model", description="This interface allows you to fine-tune a Hugging Face model on a specified dataset." ) # Launch the interface iface.launch() except Exception as e: print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")