Kevin Fink
commited on
Commit
·
6662b37
1
Parent(s):
f0b7505
init
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
26 |
model = get_peft_model(model, lora_config)
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
|
29 |
-
max_length =
|
30 |
try:
|
31 |
tokenized_train_dataset = load_from_disk(f'{hub_id.strip()}_train_dataset')
|
32 |
tokenized_test_dataset = load_from_disk(f'{hub_id.strip()}_test_dataset')
|
@@ -39,7 +39,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
39 |
model_inputs = tokenizer(
|
40 |
examples['text'],
|
41 |
max_length=max_length, # Set to None for dynamic padding
|
42 |
-
padding=
|
43 |
truncation=True,
|
44 |
)
|
45 |
|
@@ -47,7 +47,7 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
47 |
labels = tokenizer(
|
48 |
examples['target'],
|
49 |
max_length=max_length, # Set to None for dynamic padding
|
50 |
-
padding=
|
51 |
truncation=True,
|
52 |
text_target=examples['target'] # Use text_target for target text
|
53 |
)
|
@@ -98,7 +98,8 @@ def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch
|
|
98 |
eval_dataset=tokenized_datasets['test'],
|
99 |
#callbacks=[LoggingCallback()],
|
100 |
)
|
101 |
-
|
|
|
102 |
# Fine-tune the model
|
103 |
trainer.train()
|
104 |
trainer.push_to_hub(commit_message="Training complete!")
|
|
|
26 |
model = get_peft_model(model, lora_config)
|
27 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
|
29 |
+
max_length = 91
|
30 |
try:
|
31 |
tokenized_train_dataset = load_from_disk(f'{hub_id.strip()}_train_dataset')
|
32 |
tokenized_test_dataset = load_from_disk(f'{hub_id.strip()}_test_dataset')
|
|
|
39 |
model_inputs = tokenizer(
|
40 |
examples['text'],
|
41 |
max_length=max_length, # Set to None for dynamic padding
|
42 |
+
padding='longest', # Disable padding here, we will handle it later
|
43 |
truncation=True,
|
44 |
)
|
45 |
|
|
|
47 |
labels = tokenizer(
|
48 |
examples['target'],
|
49 |
max_length=max_length, # Set to None for dynamic padding
|
50 |
+
padding='longest', # Disable padding here, we will handle it later
|
51 |
truncation=True,
|
52 |
text_target=examples['target'] # Use text_target for target text
|
53 |
)
|
|
|
98 |
eval_dataset=tokenized_datasets['test'],
|
99 |
#callbacks=[LoggingCallback()],
|
100 |
)
|
101 |
+
for batch in trainer.get_train_dataloader():
|
102 |
+
print(batch['input_ids'].shape, batch['labels'].shape)
|
103 |
# Fine-tune the model
|
104 |
trainer.train()
|
105 |
trainer.push_to_hub(commit_message="Training complete!")
|