import spaces import gradio as gr from transformers import AutoModelForSeq2SeqLM import os from huggingface_hub import login @spaces.GPU def fine_tune_model(model_name): #login(api_key.strip()) # Load the model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip()) return 'WORKS!'#model # Create Gradio interface try: iface = gr.Interface( fn=fine_tune_model, inputs=[ gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"), ], outputs="text", title="Fine-Tune Hugging Face Model", description="This interface allows you to fine-tune a Hugging Face model on a specified dataset." ) # Launch the interface iface.launch() except Exception as e: print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")