shorecode commited on
Commit
a19fec0
·
verified ·
1 Parent(s): 43e6492

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -108
app.py CHANGED
@@ -1,135 +1,33 @@
1
  import spaces
2
  import gradio as gr
3
- from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
4
- from transformers import DataCollatorForSeq2Seq
5
- from datasets import load_dataset, concatenate_datasets, load_from_disk
6
- import traceback
7
 
8
 
9
  import os
10
  from huggingface_hub import login
11
 
12
  @spaces.GPU
13
- def fine_tune_model(model_name, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
14
  try:
15
  #login(api_key.strip())
16
  # Load the model and tokenizer
17
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
18
-
19
-
20
- # Set training arguments
21
- training_args = TrainingArguments(
22
- output_dir='/data/results',
23
- eval_strategy="steps", # Change this to steps
24
- save_strategy='steps',
25
- learning_rate=lr*0.00001,
26
- per_device_train_batch_size=int(batch_size),
27
- per_device_eval_batch_size=int(batch_size),
28
- num_train_epochs=int(num_epochs),
29
- weight_decay=0.01,
30
- gradient_accumulation_steps=int(grad),
31
- max_grad_norm = 1.0,
32
- load_best_model_at_end=True,
33
- metric_for_best_model="accuracy",
34
- greater_is_better=True,
35
- logging_dir='/data/logs',
36
- logging_steps=10,
37
- #push_to_hub=True,
38
- hub_model_id=hub_id.strip(),
39
- fp16=True,
40
- #lr_scheduler_type='cosine',
41
- save_steps=100, # Save checkpoint every 500 steps
42
- save_total_limit=3,
43
- )
44
- # Check if a checkpoint exists and load it
45
- max_length = 128
46
- # Load the dataset
47
- dataset = load_dataset(dataset_name.strip())
48
- tokenizer = AutoTokenizer.from_pretrained(model_name)
49
- # Tokenize the dataset
50
- def tokenize_function(examples):
51
-
52
- # Assuming 'text' is the input and 'target' is the expected output
53
- model_inputs = tokenizer(
54
- examples['text'],
55
- max_length=max_length, # Set to None for dynamic padding
56
- padding=True, # Disable padding here, we will handle it later
57
- truncation=True,
58
- )
59
-
60
- # Setup the decoder input IDs (shifted right)
61
- labels = tokenizer(
62
- examples['target'],
63
- max_length=max_length, # Set to None for dynamic padding
64
- padding=True, # Disable padding here, we will handle it later
65
- truncation=True,
66
- text_target=examples['target'] # Use text_target for target text
67
- )
68
-
69
- # Add labels to the model inputs
70
- model_inputs["labels"] = labels["input_ids"]
71
-
72
-
73
- tokenized_datasets = dataset.map(tokenize_function, batched=True)
74
-
75
- tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
76
- tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
77
-
78
- # Create Trainer
79
- trainer = Trainer(
80
- model=model,
81
- args=training_args,
82
- train_dataset=tokenized_datasets['train'],
83
- eval_dataset=tokenized_datasets['test'],
84
- compute_metrics=compute_metrics,
85
- #callbacks=[LoggingCallback()],
86
- )
87
 
88
- # Fine-tune the model
89
- trainer.train()
90
- trainer.push_to_hub(commit_message="Training complete!")
91
- except Exception as e:
92
- return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
93
- return 'DONE!'#model
94
- '''
95
- # Define Gradio interface
96
- def predict(text):
97
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
98
- tokenizer = AutoTokenizer.from_pretrained(model_name)
99
- inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
100
- outputs = model(inputs)
101
- predictions = outputs.logits.argmax(dim=-1)
102
- return predictions.item()
103
- '''
104
  # Create Gradio interface
105
  try:
106
  iface = gr.Interface(
107
  fn=fine_tune_model,
108
  inputs=[
109
  gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
110
- gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
111
- gr.Textbox(label="HF hub to push to after training"),
112
- gr.Textbox(label="HF API token"),
113
- gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
114
- gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
115
- gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
116
- gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1),
117
  ],
118
  outputs="text",
119
  title="Fine-Tune Hugging Face Model",
120
  description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
121
  )
122
- '''
123
- iface = gr.Interface(
124
- fn=predict,
125
- inputs=[
126
- gr.Textbox(label="Query"),
127
- ],
128
- outputs="text",
129
- title="Fine-Tune Hugging Face Model",
130
- description="This interface allows you to test a fine-tune Hugging Face model."
131
- )
132
- '''
133
  # Launch the interface
134
  iface.launch()
135
  except Exception as e:
 
1
  import spaces
2
  import gradio as gr
3
+ from transformers import AutoModelForSeq2SeqLM
4
+
 
 
5
 
6
 
7
  import os
8
  from huggingface_hub import login
9
 
10
  @spaces.GPU
11
+ def fine_tune_model(model_name):
12
  try:
13
  #login(api_key.strip())
14
  # Load the model and tokenizer
15
  model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
+ return 'WORKS!'#model
18
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  # Create Gradio interface
20
  try:
21
  iface = gr.Interface(
22
  fn=fine_tune_model,
23
  inputs=[
24
  gr.Textbox(label="Model Name (e.g., 'google/t5-efficient-tiny-nh8')"),
 
 
 
 
 
 
 
25
  ],
26
  outputs="text",
27
  title="Fine-Tune Hugging Face Model",
28
  description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
29
  )
30
+
 
 
 
 
 
 
 
 
 
 
31
  # Launch the interface
32
  iface.launch()
33
  except Exception as e: