Kevin Fink commited on
Commit
871c25a
·
1 Parent(s): 612c19e

gradio fix

Browse files
Files changed (1) hide show
  1. app.py +2 -3
app.py CHANGED
@@ -48,14 +48,14 @@ def fine_tune_model(model_name, dataset_name, hub_id, num_epochs, batch_size, lr
48
  trainer.train()
49
  trainer.push_to_hub(commit_message="Training complete!")
50
  return 'DONE!'#model
51
-
52
  # Define Gradio interface
53
  def predict(text):
54
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
55
  outputs = model(inputs)
56
  predictions = outputs.logits.argmax(dim=-1)
57
  return "Positive" if predictions.item() == 1 else "Negative"
58
-
59
  # Create Gradio interface
60
  iface = gr.Interface(
61
  fn=fine_tune_model,
@@ -65,7 +65,6 @@ iface = gr.Interface(
65
  gr.inputs.Textbox(label="HF hub to push to after training"),
66
  gr.inputs.Slider(minimum=1, maximum=10, default=3, label="Number of Epochs"),
67
  gr.inputs.Slider(minimum=1, maximum=16, default=4, label="Batch Size"),
68
- gr.inputs.Slider(minimum=1, maximum=16, default=4, label="Batch Size"),
69
  gr.inputs.Slider(minimum=1, maximum=1000, default=50, label="Learning Rate (e-6)"),
70
  gr.inputs.Slider(minimum=1, maximum=100, default=1, label="Gradient accumulation (e-1)"),
71
  ],
 
48
  trainer.train()
49
  trainer.push_to_hub(commit_message="Training complete!")
50
  return 'DONE!'#model
51
+ '''
52
  # Define Gradio interface
53
  def predict(text):
54
  inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
55
  outputs = model(inputs)
56
  predictions = outputs.logits.argmax(dim=-1)
57
  return "Positive" if predictions.item() == 1 else "Negative"
58
+ '''
59
  # Create Gradio interface
60
  iface = gr.Interface(
61
  fn=fine_tune_model,
 
65
  gr.inputs.Textbox(label="HF hub to push to after training"),
66
  gr.inputs.Slider(minimum=1, maximum=10, default=3, label="Number of Epochs"),
67
  gr.inputs.Slider(minimum=1, maximum=16, default=4, label="Batch Size"),
 
68
  gr.inputs.Slider(minimum=1, maximum=1000, default=50, label="Learning Rate (e-6)"),
69
  gr.inputs.Slider(minimum=1, maximum=100, default=1, label="Gradient accumulation (e-1)"),
70
  ],