Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,55 @@
|
|
1 |
import os
|
2 |
import requests
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
7 |
-
|
8 |
if not groq_api_key:
|
9 |
-
raise ValueError("GROQ_API_KEY is missing!
|
10 |
|
11 |
-
# Define the API endpoint and headers
|
12 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
13 |
headers = {"Authorization": f"Bearer {groq_api_key}"}
|
14 |
|
15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def chat_with_groq(user_input):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"creep", "fatigue", "strength", "tensile", "impact", "fracture", "modulus"
|
22 |
-
]
|
23 |
-
|
24 |
if not any(word in user_input.lower() for word in keywords):
|
25 |
-
return "⚠️ I am an expert in Materials Science
|
26 |
|
27 |
system_prompt = (
|
28 |
-
"You are
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
|
|
32 |
)
|
33 |
-
|
34 |
body = {
|
35 |
"model": "llama-3.1-8b-instant",
|
36 |
"messages": [
|
@@ -38,16 +57,44 @@ def chat_with_groq(user_input):
|
|
38 |
{"role": "user", "content": user_input}
|
39 |
]
|
40 |
}
|
41 |
-
|
42 |
response = requests.post(url, headers=headers, json=body)
|
43 |
-
|
44 |
if response.status_code == 200:
|
45 |
-
|
|
|
|
|
46 |
else:
|
47 |
return f"Error: {response.json()}"
|
48 |
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
#orange-btn {
|
52 |
background-color: #f97316 !important;
|
53 |
color: white !important;
|
@@ -55,32 +102,56 @@ with gr.Blocks(title="Materials Science Expert Chatbot", css="""
|
|
55 |
font-weight: bold;
|
56 |
}
|
57 |
""") as demo:
|
58 |
-
|
59 |
-
gr.Markdown("## 🧪 Materials Science Expert\nAsk about the best materials for any engineering or industrial application.")
|
60 |
|
61 |
with gr.Row():
|
62 |
with gr.Column(scale=3):
|
63 |
user_input = gr.Textbox(
|
|
|
|
|
64 |
lines=2,
|
65 |
-
|
66 |
-
label="Ask your question"
|
67 |
)
|
|
|
68 |
with gr.Column(scale=1, min_width=100):
|
69 |
-
submit_btn = gr.Button("Submit",
|
70 |
|
|
|
71 |
gr.Markdown("#### 📌 Popular Materials Science related questions")
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
submit_btn.click(
|
|
|
83 |
|
84 |
-
# Launch
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch()
|
|
|
1 |
import os
|
2 |
import requests
|
3 |
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import markdown
|
6 |
+
import tempfile
|
7 |
+
from fpdf import FPDF
|
8 |
+
from io import BytesIO
|
9 |
+
import nglview as nv
|
10 |
+
import ipywidgets
|
11 |
|
12 |
+
# API setup
|
13 |
groq_api_key = os.getenv("GROQ_API_KEY")
|
|
|
14 |
if not groq_api_key:
|
15 |
+
raise ValueError("GROQ_API_KEY is missing!")
|
16 |
|
|
|
17 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
18 |
headers = {"Authorization": f"Bearer {groq_api_key}"}
|
19 |
|
20 |
+
# Globals to hold table for export
|
21 |
+
comparison_table = None
|
22 |
+
|
23 |
+
# Function to extract markdown table and convert to dataframe
|
24 |
+
def extract_table(md):
|
25 |
+
global comparison_table
|
26 |
+
lines = [line.strip() for line in md.splitlines() if "|" in line and "---" not in line]
|
27 |
+
headers = [x.strip() for x in lines[0].split("|")[1:-1]]
|
28 |
+
data = []
|
29 |
+
for row in lines[1:]:
|
30 |
+
values = [x.strip() for x in row.split("|")[1:-1]]
|
31 |
+
data.append(values)
|
32 |
+
df = pd.DataFrame(data, columns=headers)
|
33 |
+
comparison_table = df
|
34 |
+
return df
|
35 |
+
|
36 |
+
# Main chatbot function
|
37 |
def chat_with_groq(user_input):
|
38 |
+
keywords = ["material", "materials", "alloy", "composite", "polymer", "ceramic",
|
39 |
+
"application", "mechanical", "thermal", "corrosion", "creep", "fatigue",
|
40 |
+
"strength", "tensile", "impact", "fracture", "modulus", "AI", "ML", "machine learning"]
|
41 |
+
|
|
|
|
|
|
|
42 |
if not any(word in user_input.lower() for word in keywords):
|
43 |
+
return "⚠️ I am an expert in Materials Science. Ask me anything about it and I’ll try my best. For other topics, try ChatGPT! 🙂"
|
44 |
|
45 |
system_prompt = (
|
46 |
+
"You are a materials science expert. When a user asks about materials for an application, provide:\n"
|
47 |
+
"1. Required properties.\n"
|
48 |
+
"2. A markdown table comparing the top 3 materials (rows: properties, columns: materials).\n"
|
49 |
+
"3. A short summary of use cases.\n"
|
50 |
+
"Only reply with markdown content."
|
51 |
)
|
52 |
+
|
53 |
body = {
|
54 |
"model": "llama-3.1-8b-instant",
|
55 |
"messages": [
|
|
|
57 |
{"role": "user", "content": user_input}
|
58 |
]
|
59 |
}
|
60 |
+
|
61 |
response = requests.post(url, headers=headers, json=body)
|
62 |
+
|
63 |
if response.status_code == 200:
|
64 |
+
content = response.json()['choices'][0]['message']['content']
|
65 |
+
extract_table(content)
|
66 |
+
return content
|
67 |
else:
|
68 |
return f"Error: {response.json()}"
|
69 |
|
70 |
+
# File export functions
|
71 |
+
def download_csv():
|
72 |
+
if comparison_table is not None:
|
73 |
+
return comparison_table.to_csv(index=False).encode('utf-8')
|
74 |
+
return None
|
75 |
+
|
76 |
+
def download_pdf():
|
77 |
+
if comparison_table is None:
|
78 |
+
return None
|
79 |
+
pdf = FPDF()
|
80 |
+
pdf.add_page()
|
81 |
+
pdf.set_font("Arial", size=10)
|
82 |
+
col_width = pdf.w / (len(comparison_table.columns) + 1)
|
83 |
+
row_height = 8
|
84 |
+
for col in comparison_table.columns:
|
85 |
+
pdf.cell(col_width, row_height, col, border=1)
|
86 |
+
pdf.ln()
|
87 |
+
for i in range(len(comparison_table)):
|
88 |
+
for item in comparison_table.iloc[i]:
|
89 |
+
pdf.cell(col_width, row_height, str(item), border=1)
|
90 |
+
pdf.ln()
|
91 |
+
output = BytesIO()
|
92 |
+
pdf.output(output)
|
93 |
+
output.seek(0)
|
94 |
+
return output.read()
|
95 |
+
|
96 |
+
# Build UI
|
97 |
+
with gr.Blocks(title="Materials Science Chatbot", css="""
|
98 |
#orange-btn {
|
99 |
background-color: #f97316 !important;
|
100 |
color: white !important;
|
|
|
102 |
font-weight: bold;
|
103 |
}
|
104 |
""") as demo:
|
105 |
+
gr.Markdown("## 🧪 Materials Science Expert\nAsk about materials for any application or property requirements.")
|
|
|
106 |
|
107 |
with gr.Row():
|
108 |
with gr.Column(scale=3):
|
109 |
user_input = gr.Textbox(
|
110 |
+
label="Ask your question",
|
111 |
+
placeholder="e.g. Best materials for heat shields...",
|
112 |
lines=2,
|
113 |
+
elem_id="question_box"
|
|
|
114 |
)
|
115 |
+
gr.Markdown("💡 *Hit Enter to submit your query*")
|
116 |
with gr.Column(scale=1, min_width=100):
|
117 |
+
submit_btn = gr.Button("Submit", elem_id="orange-btn")
|
118 |
|
119 |
+
# Popular questions section
|
120 |
gr.Markdown("#### 📌 Popular Materials Science related questions")
|
121 |
+
popular_questions = [
|
122 |
+
"What are the best corrosion-resistant materials for marine environments (e.g., desalination)?",
|
123 |
+
"Which materials are ideal for solar panel coatings and desert heat management?",
|
124 |
+
"What materials are used for aerospace structures in extreme climates?",
|
125 |
+
"Best high-strength materials for construction in the Gulf region?",
|
126 |
+
"What advanced materials are used in electric vehicles and batteries in the UAE?",
|
127 |
+
"How can one leverage AI/ML techniques in Materials Science?",
|
128 |
+
"I’m a recent high school graduate interested in science. How can I explore Materials Science with AI/ML?"
|
129 |
+
]
|
130 |
+
|
131 |
+
def autofill(question):
|
132 |
+
return gr.Textbox.update(value=question)
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
for q in popular_questions:
|
136 |
+
gr.Button(q, size="sm").click(autofill, inputs=[], outputs=user_input)
|
137 |
+
|
138 |
+
# Output
|
139 |
+
output_md = gr.Markdown()
|
140 |
+
|
141 |
+
with gr.Row():
|
142 |
+
with gr.Column():
|
143 |
+
csv_btn = gr.File(label="Download CSV", visible=False)
|
144 |
+
pdf_btn = gr.File(label="Download PDF", visible=False)
|
145 |
|
146 |
+
def submit_and_prepare(user_input):
|
147 |
+
response = chat_with_groq(user_input)
|
148 |
+
csv_data = download_csv()
|
149 |
+
pdf_data = download_pdf()
|
150 |
+
return response, gr.File.update(value=("materials.csv", csv_data), visible=True), gr.File.update(value=("materials.pdf", pdf_data), visible=True)
|
151 |
|
152 |
+
submit_btn.click(submit_and_prepare, inputs=user_input, outputs=[output_md, csv_btn, pdf_btn])
|
153 |
+
user_input.submit(submit_and_prepare, inputs=user_input, outputs=[output_md, csv_btn, pdf_btn])
|
154 |
|
155 |
+
# Launch
|
156 |
if __name__ == "__main__":
|
157 |
demo.launch()
|