Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForCausalLM,
|
4 |
+
AutoTokenizer,
|
5 |
+
TextIteratorStreamer
|
6 |
+
)
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
# Configuration
|
10 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1" # Verify exact model ID on Hugging Face Hub
|
11 |
+
DEFAULT_MAX_NEW_TOKENS = 512
|
12 |
+
|
13 |
+
# Load model and tokenizer
|
14 |
+
try:
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
17 |
+
MODEL_NAME,
|
18 |
+
device_map="auto",
|
19 |
+
torch_dtype="auto",
|
20 |
+
# load_in_4bit=True # Uncomment for 4-bit quantization
|
21 |
+
)
|
22 |
+
except Exception as e:
|
23 |
+
raise gr.Error(f"Error loading model: {str(e)}")
|
24 |
+
|
25 |
+
def generate_text(prompt, max_new_tokens=DEFAULT_MAX_NEW_TOKENS, temperature=0.7, top_p=0.9):
|
26 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
27 |
+
|
28 |
+
# Streamer for real-time output
|
29 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
30 |
+
|
31 |
+
generation_kwargs = dict(
|
32 |
+
**inputs,
|
33 |
+
streamer=streamer,
|
34 |
+
max_new_tokens=max_new_tokens,
|
35 |
+
temperature=temperature,
|
36 |
+
top_p=top_p,
|
37 |
+
do_sample=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Start generation in a thread
|
41 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
42 |
+
thread.start()
|
43 |
+
|
44 |
+
# Yield generated text
|
45 |
+
generated_text = ""
|
46 |
+
for new_text in streamer:
|
47 |
+
generated_text += new_text
|
48 |
+
yield generated_text
|
49 |
+
|
50 |
+
# Gradio interface
|
51 |
+
with gr.Blocks() as demo:
|
52 |
+
gr.Markdown("# DeepSeek-R1 Demo")
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
input_text = gr.Textbox(
|
56 |
+
label="Input Prompt",
|
57 |
+
placeholder="Enter your prompt here...",
|
58 |
+
lines=5
|
59 |
+
)
|
60 |
+
output_text = gr.Textbox(
|
61 |
+
label="Generated Response",
|
62 |
+
interactive=False,
|
63 |
+
lines=10
|
64 |
+
)
|
65 |
+
|
66 |
+
with gr.Accordion("Advanced Settings", open=False):
|
67 |
+
max_tokens = gr.Slider(
|
68 |
+
minimum=64,
|
69 |
+
maximum=2048,
|
70 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
71 |
+
label="Max New Tokens"
|
72 |
+
)
|
73 |
+
temperature = gr.Slider(
|
74 |
+
minimum=0.1,
|
75 |
+
maximum=1.5,
|
76 |
+
value=0.7,
|
77 |
+
label="Temperature"
|
78 |
+
)
|
79 |
+
top_p = gr.Slider(
|
80 |
+
minimum=0.1,
|
81 |
+
maximum=1.0,
|
82 |
+
value=0.9,
|
83 |
+
label="Top-p"
|
84 |
+
)
|
85 |
+
|
86 |
+
submit_btn = gr.Button("Generate")
|
87 |
+
submit_btn.click(
|
88 |
+
fn=generate_text,
|
89 |
+
inputs=[input_text, max_tokens, temperature, top_p],
|
90 |
+
outputs=output_text,
|
91 |
+
api_name="generate"
|
92 |
+
)
|
93 |
+
|
94 |
+
if __name__ == "__main__":
|
95 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860)
|