Spaces:
Runtime error
Runtime error
Commit
·
489b7f2
1
Parent(s):
b1394c5
Update app.py
Browse files
app.py
CHANGED
@@ -9,18 +9,22 @@ from PIL import Image
|
|
9 |
from io import BytesIO
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
|
12 |
-
# dataset = load_dataset("imagefolder", data_files="https://huggingface.co/datasets/nlphuji/flickr30k/blob/main/flickr30k-images.zip")
|
13 |
-
|
14 |
# Load the pre-trained sentence encoder
|
15 |
model_name = "sentence-transformers/all-distilroberta-v1"
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
model = SentenceTransformer(model_name)
|
18 |
|
19 |
-
# Load the FAISS index
|
20 |
-
index_name = 'index.faiss'
|
21 |
-
index_url = 'https://huggingface.co/spaces/shivangibithel/Text2ImageRetrieval/blob/main/faiss_flickr8k.index'
|
22 |
-
wget.download(index_url, index_name)
|
23 |
-
index = faiss.read_index(index_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Map the image ids to the corresponding image URLs
|
26 |
image_map_name = 'captions.json'
|
@@ -35,11 +39,13 @@ caption_list = list(caption_dict.values())
|
|
35 |
|
36 |
def search(query, k=5):
|
37 |
# Encode the query
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
|
41 |
# Search for the nearest neighbors in the FAISS index
|
42 |
-
D, I = index.search(
|
43 |
|
44 |
# Map the image ids to the corresponding image URLs
|
45 |
image_urls = []
|
|
|
9 |
from io import BytesIO
|
10 |
from sentence_transformers import SentenceTransformer
|
11 |
|
|
|
|
|
12 |
# Load the pre-trained sentence encoder
|
13 |
model_name = "sentence-transformers/all-distilroberta-v1"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
model = SentenceTransformer(model_name)
|
16 |
|
17 |
+
# # Load the FAISS index
|
18 |
+
# index_name = 'index.faiss'
|
19 |
+
# index_url = 'https://huggingface.co/spaces/shivangibithel/Text2ImageRetrieval/blob/main/faiss_flickr8k.index'
|
20 |
+
# wget.download(index_url, index_name)
|
21 |
+
# index = faiss.read_index(index_name)
|
22 |
+
|
23 |
+
vectors = np.load("https://huggingface.co/spaces/shivangibithel/Text2ImageRetrieval/blob/main/sbert_text_features.npy")
|
24 |
+
vector_dimension = vectors.shape[1]
|
25 |
+
index = faiss.IndexFlatL2(vector_dimension)
|
26 |
+
faiss.normalize_L2(vectors)
|
27 |
+
index.add(vectors)
|
28 |
|
29 |
# Map the image ids to the corresponding image URLs
|
30 |
image_map_name = 'captions.json'
|
|
|
39 |
|
40 |
def search(query, k=5):
|
41 |
# Encode the query
|
42 |
+
query_embedding = model.encode(query)
|
43 |
+
query_vector = np.array([query_embedding])
|
44 |
+
faiss.normalize_L2(query_vector)
|
45 |
+
index.nprobe = index.ntotal
|
46 |
|
47 |
# Search for the nearest neighbors in the FAISS index
|
48 |
+
D, I = index.search(query_vector, k)
|
49 |
|
50 |
# Map the image ids to the corresponding image URLs
|
51 |
image_urls = []
|