Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 6,405 Bytes
			
			| 3c10b34 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 | """ from https://github.com/jik876/hifi-gan """
import math
import os
import random
import numpy as np
import torch
import torch.utils.data
from librosa.filters import mel as librosa_mel_fn
from librosa.util import normalize
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
def load_wav(full_path):
    sampling_rate, data = read(full_path)
    return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
    return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
    return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
    return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
    return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
    output = dynamic_range_compression_torch(magnitudes)
    return output
def spectral_de_normalize_torch(magnitudes):
    output = dynamic_range_decompression_torch(magnitudes)
    return output
mel_basis = {}
hann_window = {}
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
    if torch.min(y) < -1.:
        print('min value is ', torch.min(y))
    if torch.max(y) > 1.:
        print('max value is ', torch.max(y))
    global mel_basis, hann_window
    if fmax not in mel_basis:
        mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
        mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
        hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
    y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
    y = y.squeeze(1)
    spec = torch.view_as_real(torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
                      center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True))
    spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
    spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
    spec = spectral_normalize_torch(spec)
    return spec
def get_dataset_filelist(a):
    with open(a.input_training_file, 'r', encoding='utf-8') as fi:
        training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
                          for x in fi.read().split('\n') if len(x) > 0]
    with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
        validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
                            for x in fi.read().split('\n') if len(x) > 0]
    return training_files, validation_files
class MelDataset(torch.utils.data.Dataset):
    def __init__(self, training_files, segment_size, n_fft, num_mels,
                 hop_size, win_size, sampling_rate,  fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
                 device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None):
        self.audio_files = training_files
        random.seed(1234)
        if shuffle:
            random.shuffle(self.audio_files)
        self.segment_size = segment_size
        self.sampling_rate = sampling_rate
        self.split = split
        self.n_fft = n_fft
        self.num_mels = num_mels
        self.hop_size = hop_size
        self.win_size = win_size
        self.fmin = fmin
        self.fmax = fmax
        self.fmax_loss = fmax_loss
        self.cached_wav = None
        self.n_cache_reuse = n_cache_reuse
        self._cache_ref_count = 0
        self.device = device
        self.fine_tuning = fine_tuning
        self.base_mels_path = base_mels_path
    def __getitem__(self, index):
        filename = self.audio_files[index]
        if self._cache_ref_count == 0:
            audio, sampling_rate = load_wav(filename)
            audio = audio / MAX_WAV_VALUE
            if not self.fine_tuning:
                audio = normalize(audio) * 0.95
            self.cached_wav = audio
            if sampling_rate != self.sampling_rate:
                raise ValueError("{} SR doesn't match target {} SR".format(
                    sampling_rate, self.sampling_rate))
            self._cache_ref_count = self.n_cache_reuse
        else:
            audio = self.cached_wav
            self._cache_ref_count -= 1
        audio = torch.FloatTensor(audio)
        audio = audio.unsqueeze(0)
        if not self.fine_tuning:
            if self.split:
                if audio.size(1) >= self.segment_size:
                    max_audio_start = audio.size(1) - self.segment_size
                    audio_start = random.randint(0, max_audio_start)
                    audio = audio[:, audio_start:audio_start+self.segment_size]
                else:
                    audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
            mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
                                  self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
                                  center=False)
        else:
            mel = np.load(
                os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy'))
            mel = torch.from_numpy(mel)
            if len(mel.shape) < 3:
                mel = mel.unsqueeze(0)
            if self.split:
                frames_per_seg = math.ceil(self.segment_size / self.hop_size)
                if audio.size(1) >= self.segment_size:
                    mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
                    mel = mel[:, :, mel_start:mel_start + frames_per_seg]
                    audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
                else:
                    mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
                    audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
        mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
                                   self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
                                   center=False)
        return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
    def __len__(self):
        return len(self.audio_files)
 | 
