File size: 7,853 Bytes
3c10b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import random
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple

import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torchaudio as ta
from einops import pack
from lightning import LightningDataModule
from torch.utils.data.dataloader import DataLoader

from diff_ttsg.text import cmudict, text_to_sequence
from diff_ttsg.text.symbols import symbols
from diff_ttsg.utils.audio import mel_spectrogram
from diff_ttsg.utils.model import fix_len_compatibility, normalize
from diff_ttsg.utils.utils import intersperse, parse_filelist


class CormacDataModule(LightningDataModule):

    def __init__(
        self,
        train_filelist_path,
        valid_filelist_path,
        batch_size,
        num_workers,
        pin_memory,
        cmudict_path,
        motion_folder,
        add_blank,
        n_fft,
        n_feats,
        sample_rate,
        hop_length,
        win_length,
        f_min,
        f_max,
        data_statistics,
        motion_pipeline_filename,
        seed
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

    def setup(self, stage: Optional[str] = None):
        """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.

        This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
        careful not to execute things like random split twice!
        """
        # load and split datasets only if not loaded already
        
        self.trainset = TextMelDataset(
            self.hparams.train_filelist_path,
            self.hparams.cmudict_path,
            self.hparams.motion_folder,
            self.hparams.add_blank,
            self.hparams.n_fft,
            self.hparams.n_feats,
            self.hparams.sample_rate,
            self.hparams.hop_length,
            self.hparams.win_length, 
            self.hparams.f_min,
            self.hparams.f_max,
            self.hparams.data_statistics,
            self.hparams.seed
        )
        self.validset = TextMelDataset(
            self.hparams.valid_filelist_path,
            self.hparams.cmudict_path,
            self.hparams.motion_folder,
            self.hparams.add_blank,
            self.hparams.n_fft,
            self.hparams.n_feats,
            self.hparams.sample_rate,
            self.hparams.hop_length,
            self.hparams.win_length,
            self.hparams.f_min,
            self.hparams.f_max,
            self.hparams.data_statistics,
            self.hparams.seed
        )
        

    def train_dataloader(self):
        return DataLoader(
            dataset=self.trainset,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=True,
            collate_fn=TextMelBatchCollate()
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.validset,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False,
            collate_fn=TextMelBatchCollate()
        )

    def teardown(self, stage: Optional[str] = None):
        """Clean up after fit or test."""
        pass

    def state_dict(self):
        """Extra things to save to checkpoint."""
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]):
        """Things to do when loading checkpoint."""
        pass


class TextMelDataset(torch.utils.data.Dataset):
    def __init__(self, filelist_path, cmudict_path, motion_folder, add_blank=True,
                 n_fft=1024, n_mels=80, sample_rate=22050,
                 hop_length=256, win_length=1024, f_min=0., f_max=8000, data_parameters=None, seed=None):
        self.filepaths_and_text = parse_filelist(filelist_path)
        self.motion_fileloc = Path(motion_folder)        
        self.cmudict = cmudict.CMUDict(cmudict_path)
        self.add_blank = add_blank
        self.n_fft = n_fft
        self.n_mels = n_mels
        self.sample_rate = sample_rate
        self.hop_length = hop_length
        self.win_length = win_length
        self.f_min = f_min
        self.f_max = f_max
        if data_parameters is not None:
            self.data_parameters = data_parameters
        else:
            self.data_parameters = { 'mel_mean': 0, 'mel_std': 1, 'motion_mean': 0, 'motion_std': 1 }
        random.seed(seed)
        random.shuffle(self.filepaths_and_text)

    def get_pair(self, filepath_and_text):
        filepath, text = filepath_and_text[0], filepath_and_text[1]
        text = self.get_text(text, add_blank=self.add_blank)
        mel = self.get_mel(filepath)
        motion = self.get_motion(filepath, mel.shape[1])
        return (text, mel, motion)
    
    def get_motion(self, filename, mel_shape, ext=".expmap_86.1328125fps.pkl"):
        file_loc = self.motion_fileloc / Path(Path(filename).name).with_suffix(ext)
        motion = torch.from_numpy(pd.read_pickle(file_loc).to_numpy())
        motion = F.interpolate(motion.T.unsqueeze(0), mel_shape).squeeze(0)
        motion = normalize(motion, self.data_parameters['motion_mean'], self.data_parameters['motion_std'])
        return motion 

    def get_mel(self, filepath):
        audio, sr = ta.load(filepath)
        assert sr == self.sample_rate
        mel = mel_spectrogram(audio, self.n_fft, 80, self.sample_rate, self.hop_length,
                              self.win_length, self.f_min, self.f_max, center=False).squeeze()
        mel = normalize(mel, self.data_parameters['mel_mean'], self.data_parameters['mel_std'])
        return mel

    def get_text(self, text, add_blank=True):
        text_norm = text_to_sequence(text, dictionary=self.cmudict)
        if self.add_blank:
            text_norm = intersperse(text_norm, len(symbols))  # add a blank token, whose id number is len(symbols)
        text_norm = torch.IntTensor(text_norm)
        return text_norm

    def __getitem__(self, index):
        text, mel, motion = self.get_pair(self.filepaths_and_text[index])
        item = {'y': mel, 'x': text, 'y_motion': motion}
        return item

    def __len__(self):
        return len(self.filepaths_and_text)

    def sample_test_batch(self, size):
        idx = np.random.choice(range(len(self)), size=size, replace=False)
        test_batch = []
        for index in idx:
            test_batch.append(self.__getitem__(index))
        return test_batch


class TextMelBatchCollate(object):
    def __call__(self, batch):
        B = len(batch)
        y_max_length = max([item['y'].shape[-1] for item in batch])
        y_max_length = fix_len_compatibility(y_max_length)
        x_max_length = max([item['x'].shape[-1] for item in batch])
        n_feats = batch[0]['y'].shape[-2]
        n_motion = batch[0]['y_motion'].shape[-2]

        y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
        x = torch.zeros((B, x_max_length), dtype=torch.long)
        y_motion = torch.zeros((B, n_motion, y_max_length), dtype=torch.float32)
        y_lengths, x_lengths = [], []

        for i, item in enumerate(batch):
            y_, x_, y_motion_ = item['y'], item['x'], item['y_motion']
            y_lengths.append(y_.shape[-1])
            x_lengths.append(x_.shape[-1])
            y[i, :, :y_.shape[-1]] = y_
            x[i, :x_.shape[-1]] = x_
            y_motion[i, :, :y_motion_.shape[-1]] = y_motion_

        y_lengths = torch.LongTensor(y_lengths)
        x_lengths = torch.LongTensor(x_lengths)
        return {'x': x, 'x_lengths': x_lengths, 'y': y, 'y_lengths': y_lengths, 'y_motion': y_motion}