File size: 18,368 Bytes
3c10b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import math
import random
from typing import Any

import torch
from lightning import LightningModule

import diff_ttsg.utils.monotonic_align as monotonic_align
from diff_ttsg import utils
from diff_ttsg.models.components.diffusion import Diffusion, Diffusion_Motion
from diff_ttsg.models.components.text_encoder import (MuMotionEncoder,
                                                      TextEncoder)
from diff_ttsg.utils.model import (denormalize, duration_loss,
                                   fix_len_compatibility, generate_path,
                                   sequence_mask)
from diff_ttsg.utils.utils import plot_tensor

log = utils.get_pylogger(__name__)

class Diff_TTSG(LightningModule):
    def __init__(
        self,
        n_vocab,
        n_spks,
        spk_emb_dim,
        n_enc_channels,
        filter_channels,
        filter_channels_dp, 
        n_heads,
        n_enc_layers,
        enc_kernel,
        enc_dropout,
        window_size, 
        n_feats,
        n_motions,
        dec_dim,
        beta_min,
        beta_max,
        pe_scale,         
        mu_motion_encoder_params,
        motion_reduction_factor,
        motion_decoder_channels,
        data_statistics,
        out_size,
        only_speech=False,
        encoder_type="default",
        optimizer=None
    ):
        super(Diff_TTSG, self).__init__()
        
        self.save_hyperparameters(logger=False)

        self.n_vocab = n_vocab
        self.n_spks = n_spks
        self.spk_emb_dim = spk_emb_dim
        self.n_enc_channels = n_enc_channels
        self.filter_channels = filter_channels
        self.filter_channels_dp = filter_channels_dp
        self.n_heads = n_heads
        self.n_enc_layers = n_enc_layers
        self.enc_kernel = enc_kernel
        self.enc_dropout = enc_dropout
        self.window_size = window_size
        self.n_feats = n_feats
        self.n_motions = n_motions
        self.dec_dim = dec_dim
        self.beta_min = beta_min
        self.beta_max = beta_max
        self.pe_scale = pe_scale
        self.generate_motion = not only_speech
        self.motion_reduction_factor = motion_reduction_factor
        self.out_size = out_size
        self.mu_diffusion_channels = motion_decoder_channels

        if n_spks > 1:
            self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
        self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels, 
                                   filter_channels, filter_channels_dp, n_heads, 
                                   n_enc_layers, enc_kernel, enc_dropout, window_size, encoder_type=encoder_type)
        self.decoder = Diffusion(n_feats, dec_dim, n_spks, spk_emb_dim, beta_min, beta_max, pe_scale)
         
        if self.generate_motion: 
            self.motion_prior_loss = mu_motion_encoder_params.pop('prior_loss', True)
            self.mu_motion_encoder = MuMotionEncoder(
                input_channels=n_feats,
                output_channels=n_motions,
                **mu_motion_encoder_params
            )
            self.decoder_motion = Diffusion_Motion(
                    in_channels=n_motions,
                    motion_decoder_channels=motion_decoder_channels,
                    beta_min=beta_min,
                    beta_max=beta_max,
            )
        
        self.update_data_statistics(data_statistics)

    def update_data_statistics(self, data_statistics):
        if data_statistics is None:
            data_statistics = {
                'mel_mean': 0.0,
                'mel_std': 1.0,
                'motion_mean': 0.0,
                'motion_std': 1.0,
            }

        self.register_buffer('mel_mean', torch.tensor(data_statistics['mel_mean']))
        self.register_buffer('mel_std', torch.tensor(data_statistics['mel_std']))
        self.register_buffer('motion_mean', torch.tensor(data_statistics['motion_mean']))
        self.register_buffer('motion_std', torch.tensor(data_statistics['motion_std']))
        
    @torch.inference_mode()
    def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0):
        """
        Generates mel-spectrogram from text. Returns:
            1. encoder outputs
            2. decoder outputs
            3. generated alignment
        
        Args:
            x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
            x_lengths (torch.Tensor): lengths of texts in batch.
            n_timesteps (int): number of steps to use for reverse diffusion in decoder.
            temperature (float, optional): controls variance of terminal distribution.
            stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
                Usually, does not provide synthesis improvements.
            length_scale (float, optional): controls speech pace.
                Increase value to slow down generated speech and vice versa.
        """
        if isinstance(n_timesteps, dict):
            n_timestep_mel = n_timesteps['mel']
            n_timestep_motion = n_timesteps['motion']
        else:
            n_timestep_mel = n_timesteps
            n_timestep_motion = n_timesteps
        
        if isinstance(temperature, dict):
            temperature_mel = temperature['mel']
            temperature_motion = temperature['motion']
        else:
            temperature_mel = temperature
            temperature_motion = temperature
            
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)

        # Get encoder_outputs `mu_x` and log-scaled token durations `logw`
        mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)

        w = torch.exp(logw) * x_mask
        w_ceil = torch.ceil(w) * length_scale
        y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
        y_max_length = int(y_lengths.max())
        y_max_length_ = fix_len_compatibility(y_max_length)

        # Using obtained durations `w` construct alignment map `attn`
        y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
        attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
        attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)

        # Align encoded text and get mu_y
        mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
        mu_y = mu_y.transpose(1, 2)
        encoder_outputs = mu_y[:, :, :y_max_length]
        
        
        # Sample latent representation from terminal distribution N(mu_y, I)
        z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature_mel
        # Generate sample by performing reverse dynamics
        decoder_outputs = self.decoder(z, y_mask, mu_y, n_timestep_mel, stoc, spk)
        decoder_outputs = decoder_outputs[:, :, :y_max_length]

        if self.generate_motion:
            mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor] 
            y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor]
            mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask)
            encoder_outputs_motion = mu_y_motion[:, :, :y_max_length]
            # sample latent representation from terminal distribution N(mu_y_motion, I)
            z_motion = mu_y_motion + torch.randn_like(mu_y_motion, device=mu_y_motion.device) / temperature_motion 
            # Generate sample by performing reverse dynamics
            decoder_outputs_motion = self.decoder_motion(z_motion, y_motion_mask, mu_y_motion, n_timestep_motion, stoc, spk)
            decoder_outputs_motion = decoder_outputs_motion[:, :, :y_max_length]
        else:
            decoder_outputs_motion = None
            encoder_outputs_motion = None        
        
        return {
            'encoder_outputs_mel': encoder_outputs,
            'decoder_outputs_mel': decoder_outputs,
            'encoder_outputs_motion': encoder_outputs_motion,
            'decoder_outputs_motion': decoder_outputs_motion,
            'attn': attn[:, :, :y_max_length],
            'mel': denormalize(decoder_outputs, self.mel_mean, self.mel_std),
            'motion': denormalize(decoder_outputs_motion, self.motion_mean, self.motion_std) if self.generate_motion else None,
        }

    def forward(self, x, x_lengths, y, y_lengths, y_motion, spk=None, out_size=None):
        """
        Computes 3 losses:
            1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
            2. prior loss: loss between mel-spectrogram and encoder outputs.
            3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
            
        Args:
            x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
            x_lengths (torch.Tensor): lengths of texts in batch.
            y (torch.Tensor): batch of corresponding mel-spectrograms.
            y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
            out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
                Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
        """
        if self.n_spks > 1:
            # Get speaker embedding
            spk = self.spk_emb(spk)
        
        # Get encoder_outputs `mu_x` and log-scaled token durations `logw`
        mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
        y_max_length = y.shape[-1]

        y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
        attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)

        # Use MAS to find most likely alignment `attn` between text and mel-spectrogram
        with torch.no_grad(): 
            const = -0.5 * math.log(2 * math.pi) * self.n_feats
            factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
            y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
            y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
            mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
            log_prior = y_square - y_mu_double + mu_square + const

            attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
            attn = attn.detach()

        # Compute loss between predicted log-scaled durations and those obtained from MAS
        logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
        dur_loss = duration_loss(logw, logw_, x_lengths)

        # Cut a small segment of mel-spectrogram in order to increase batch size
        if not isinstance(out_size, type(None)):
            max_offset = (y_lengths - out_size).clamp(0)    # cut a random segment of size `out_size` from each sample in batch max_offset: [758, 160, 773]
            offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))  # offset ranges for each sample in batch offset_ranges: [(0, 758), (0, 160), (0, 773)]
            out_offset = torch.LongTensor([
                torch.tensor(random.choice(range(start, end)) if end > start else 0)
                for start, end in offset_ranges
            ]).to(y_lengths)
            attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
            y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)

            if self.generate_motion:
                y_motion_cut = torch.zeros(y_motion.shape[0], self.n_motions, out_size, dtype=y_motion.dtype, device=y_motion.device)

            y_cut_lengths = []
            for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
                y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
                y_cut_lengths.append(y_cut_length)
                cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
                y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
                if self.generate_motion:
                    y_motion_cut[i, :, :y_cut_length] = y_motion[i, :, cut_lower:cut_upper]

                attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
            y_cut_lengths = torch.LongTensor(y_cut_lengths)
            y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
            
            attn = attn_cut
            y = y_cut
            if self.generate_motion:
                y_motion = y_motion_cut

            y_mask = y_cut_mask

        # Align encoded text with mel-spectrogram and get mu_y segment
        mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
        mu_y = mu_y.transpose(1, 2)
        
        

        # Compute loss of score-based decoder
        diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
        if self.generate_motion:
            # Reduce motion features
            mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor]
            y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor]
            y_motion = y_motion[:, :, ::self.motion_reduction_factor]
            
            mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask)
            diff_loss_motion, xt_motion = self.decoder_motion.compute_loss(y_motion, y_motion_mask, mu_y_motion, spk)
        else:
            diff_loss_motion = 0
        
        # Compute loss between aligned encoder outputs and mel-spectrogram
        prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
        prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
        
        if self.generate_motion and self.motion_prior_loss:
            prior_loss_motion = torch.sum(0.5 * ((y_motion - mu_y_motion) ** 2 + math.log(2 * math.pi)) * y_motion_mask)
            prior_loss_motion = prior_loss_motion / (torch.sum(y_motion_mask) * self.n_motions)
        else:
            prior_loss_motion = 0
        
        return dur_loss, prior_loss + prior_loss_motion, diff_loss + diff_loss_motion

        
    def configure_optimizers(self) -> Any:
        optimizer = self.hparams.optimizer(params=self.parameters())
        return {'optimizer': optimizer}
    
    def get_losses(self, batch):
        pass
        x, x_lengths = batch['x'], batch['x_lengths']
        y, y_lengths = batch['y'], batch['y_lengths']
        y_motion = batch['y_motion']
        dur_loss, prior_loss, diff_loss = self(x, x_lengths, y, y_lengths, y_motion, out_size=self.out_size)
        return {
            'dur_loss': dur_loss,
            'prior_loss': prior_loss,
            'diff_loss': diff_loss,
        }



    def training_step(self, batch: Any, batch_idx: int):    
        loss_dict = self.get_losses(batch) 
        self.log('step', float(self.global_step), on_step=True, on_epoch=True, logger=True, sync_dist=True)

        self.log('sub_loss/train_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        self.log('sub_loss/train_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        self.log('sub_loss/train_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        
        total_loss = sum(loss_dict.values())
        self.log('loss/train', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True)

        return {'loss': total_loss, 'log': loss_dict }

    def validation_step(self, batch: Any, batch_idx: int):
        loss_dict = self.get_losses(batch) 
        self.log('sub_loss/val_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        self.log('sub_loss/val_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        self.log('sub_loss/val_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
        
        total_loss = sum(loss_dict.values())
        self.log('loss/val', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True)

        return total_loss 
     
    def on_validation_end(self) -> None:
        if self.trainer.is_global_zero:
            one_batch = next(iter(self.trainer.val_dataloaders))
            if self.current_epoch == 0:
                log.debug("Plotting original samples")
                for i in range(4):
                    y = one_batch['y'][i].unsqueeze(0).to(self.device)
                    y_motion = one_batch['y_motion'][i].unsqueeze(0).to(self.device)
                    self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y.squeeze().cpu()), self.current_epoch, dataformats='HWC')
                    if self.generate_motion:
                        self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y_motion.squeeze().cpu()), self.current_epoch, dataformats='HWC')

            log.debug(f'Synthesising...')
            for i in range(4):
                x = one_batch['x'][i].unsqueeze(0).to(self.device)
                x_lengths = one_batch['x_lengths'][i].unsqueeze(0).to(self.device)
                output = self.synthesise(x, x_lengths, n_timesteps=20)
                y_enc, y_dec = output['encoder_outputs_mel'], output['decoder_outputs_mel']
                y_motion_enc, y_motion_dec, attn = output['encoder_outputs_motion'], output['decoder_outputs_motion'], output['attn']
                self.logger.experiment.add_image(f'generated_enc/{i}', plot_tensor(y_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC')
                self.logger.experiment.add_image(f'generated_dec/{i}', plot_tensor(y_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC')
                if self.generate_motion:
                    self.logger.experiment.add_image(f'generated_enc_motion/{i}', plot_tensor(y_motion_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC')
                    self.logger.experiment.add_image(f'generated_dec_motion/{i}', plot_tensor(y_motion_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC')
                
                self.logger.experiment.add_image(f'alignment/{i}', plot_tensor(attn.squeeze().cpu()), self.current_epoch, dataformats='HWC')