Spaces:
Runtime error
Runtime error
File size: 18,368 Bytes
3c10b34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import math
import random
from typing import Any
import torch
from lightning import LightningModule
import diff_ttsg.utils.monotonic_align as monotonic_align
from diff_ttsg import utils
from diff_ttsg.models.components.diffusion import Diffusion, Diffusion_Motion
from diff_ttsg.models.components.text_encoder import (MuMotionEncoder,
TextEncoder)
from diff_ttsg.utils.model import (denormalize, duration_loss,
fix_len_compatibility, generate_path,
sequence_mask)
from diff_ttsg.utils.utils import plot_tensor
log = utils.get_pylogger(__name__)
class Diff_TTSG(LightningModule):
def __init__(
self,
n_vocab,
n_spks,
spk_emb_dim,
n_enc_channels,
filter_channels,
filter_channels_dp,
n_heads,
n_enc_layers,
enc_kernel,
enc_dropout,
window_size,
n_feats,
n_motions,
dec_dim,
beta_min,
beta_max,
pe_scale,
mu_motion_encoder_params,
motion_reduction_factor,
motion_decoder_channels,
data_statistics,
out_size,
only_speech=False,
encoder_type="default",
optimizer=None
):
super(Diff_TTSG, self).__init__()
self.save_hyperparameters(logger=False)
self.n_vocab = n_vocab
self.n_spks = n_spks
self.spk_emb_dim = spk_emb_dim
self.n_enc_channels = n_enc_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.n_heads = n_heads
self.n_enc_layers = n_enc_layers
self.enc_kernel = enc_kernel
self.enc_dropout = enc_dropout
self.window_size = window_size
self.n_feats = n_feats
self.n_motions = n_motions
self.dec_dim = dec_dim
self.beta_min = beta_min
self.beta_max = beta_max
self.pe_scale = pe_scale
self.generate_motion = not only_speech
self.motion_reduction_factor = motion_reduction_factor
self.out_size = out_size
self.mu_diffusion_channels = motion_decoder_channels
if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
self.encoder = TextEncoder(n_vocab, n_feats, n_enc_channels,
filter_channels, filter_channels_dp, n_heads,
n_enc_layers, enc_kernel, enc_dropout, window_size, encoder_type=encoder_type)
self.decoder = Diffusion(n_feats, dec_dim, n_spks, spk_emb_dim, beta_min, beta_max, pe_scale)
if self.generate_motion:
self.motion_prior_loss = mu_motion_encoder_params.pop('prior_loss', True)
self.mu_motion_encoder = MuMotionEncoder(
input_channels=n_feats,
output_channels=n_motions,
**mu_motion_encoder_params
)
self.decoder_motion = Diffusion_Motion(
in_channels=n_motions,
motion_decoder_channels=motion_decoder_channels,
beta_min=beta_min,
beta_max=beta_max,
)
self.update_data_statistics(data_statistics)
def update_data_statistics(self, data_statistics):
if data_statistics is None:
data_statistics = {
'mel_mean': 0.0,
'mel_std': 1.0,
'motion_mean': 0.0,
'motion_std': 1.0,
}
self.register_buffer('mel_mean', torch.tensor(data_statistics['mel_mean']))
self.register_buffer('mel_std', torch.tensor(data_statistics['mel_std']))
self.register_buffer('motion_mean', torch.tensor(data_statistics['motion_mean']))
self.register_buffer('motion_std', torch.tensor(data_statistics['motion_std']))
@torch.inference_mode()
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, stoc=False, spk=None, length_scale=1.0):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
stoc (bool, optional): flag that adds stochastic term to the decoder sampler.
Usually, does not provide synthesis improvements.
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
"""
if isinstance(n_timesteps, dict):
n_timestep_mel = n_timesteps['mel']
n_timestep_motion = n_timesteps['motion']
else:
n_timestep_mel = n_timesteps
n_timestep_motion = n_timesteps
if isinstance(temperature, dict):
temperature_mel = temperature['mel']
temperature_motion = temperature['motion']
else:
temperature_mel = temperature
temperature_motion = temperature
if self.n_spks > 1:
# Get speaker embedding
spk = self.spk_emb(spk)
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Sample latent representation from terminal distribution N(mu_y, I)
z = mu_y + torch.randn_like(mu_y, device=mu_y.device) / temperature_mel
# Generate sample by performing reverse dynamics
decoder_outputs = self.decoder(z, y_mask, mu_y, n_timestep_mel, stoc, spk)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
if self.generate_motion:
mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor]
y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor]
mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask)
encoder_outputs_motion = mu_y_motion[:, :, :y_max_length]
# sample latent representation from terminal distribution N(mu_y_motion, I)
z_motion = mu_y_motion + torch.randn_like(mu_y_motion, device=mu_y_motion.device) / temperature_motion
# Generate sample by performing reverse dynamics
decoder_outputs_motion = self.decoder_motion(z_motion, y_motion_mask, mu_y_motion, n_timestep_motion, stoc, spk)
decoder_outputs_motion = decoder_outputs_motion[:, :, :y_max_length]
else:
decoder_outputs_motion = None
encoder_outputs_motion = None
return {
'encoder_outputs_mel': encoder_outputs,
'decoder_outputs_mel': decoder_outputs,
'encoder_outputs_motion': encoder_outputs_motion,
'decoder_outputs_motion': decoder_outputs_motion,
'attn': attn[:, :, :y_max_length],
'mel': denormalize(decoder_outputs, self.mel_mean, self.mel_std),
'motion': denormalize(decoder_outputs_motion, self.motion_mean, self.motion_std) if self.generate_motion else None,
}
def forward(self, x, x_lengths, y, y_lengths, y_motion, spk=None, out_size=None):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. diffusion loss: loss between gaussian noise and its reconstruction by diffusion-based decoder.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
x_lengths (torch.Tensor): lengths of texts in batch.
y (torch.Tensor): batch of corresponding mel-spectrograms.
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
"""
if self.n_spks > 1:
# Get speaker embedding
spk = self.spk_emb(spk)
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
mu_x, logw, x_mask = self.encoder(x, x_lengths, spk)
y_max_length = y.shape[-1]
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
with torch.no_grad():
const = -0.5 * math.log(2 * math.pi) * self.n_feats
factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
y_square = torch.matmul(factor.transpose(1, 2), y ** 2)
y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
mu_square = torch.sum(factor * (mu_x ** 2), 1).unsqueeze(-1)
log_prior = y_square - y_mu_double + mu_square + const
attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
attn = attn.detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# Cut a small segment of mel-spectrogram in order to increase batch size
if not isinstance(out_size, type(None)):
max_offset = (y_lengths - out_size).clamp(0) # cut a random segment of size `out_size` from each sample in batch max_offset: [758, 160, 773]
offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy())) # offset ranges for each sample in batch offset_ranges: [(0, 758), (0, 160), (0, 773)]
out_offset = torch.LongTensor([
torch.tensor(random.choice(range(start, end)) if end > start else 0)
for start, end in offset_ranges
]).to(y_lengths)
attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
if self.generate_motion:
y_motion_cut = torch.zeros(y_motion.shape[0], self.n_motions, out_size, dtype=y_motion.dtype, device=y_motion.device)
y_cut_lengths = []
for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
y_cut_lengths.append(y_cut_length)
cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
if self.generate_motion:
y_motion_cut[i, :, :y_cut_length] = y_motion[i, :, cut_lower:cut_upper]
attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
y_cut_lengths = torch.LongTensor(y_cut_lengths)
y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
attn = attn_cut
y = y_cut
if self.generate_motion:
y_motion = y_motion_cut
y_mask = y_cut_mask
# Align encoded text with mel-spectrogram and get mu_y segment
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
# Compute loss of score-based decoder
diff_loss, xt = self.decoder.compute_loss(y, y_mask, mu_y, spk)
if self.generate_motion:
# Reduce motion features
mu_y_motion = mu_y[:, :, ::self.motion_reduction_factor]
y_motion_mask = y_mask[:, :, ::self.motion_reduction_factor]
y_motion = y_motion[:, :, ::self.motion_reduction_factor]
mu_y_motion = self.mu_motion_encoder(mu_y_motion, y_motion_mask)
diff_loss_motion, xt_motion = self.decoder_motion.compute_loss(y_motion, y_motion_mask, mu_y_motion, spk)
else:
diff_loss_motion = 0
# Compute loss between aligned encoder outputs and mel-spectrogram
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
if self.generate_motion and self.motion_prior_loss:
prior_loss_motion = torch.sum(0.5 * ((y_motion - mu_y_motion) ** 2 + math.log(2 * math.pi)) * y_motion_mask)
prior_loss_motion = prior_loss_motion / (torch.sum(y_motion_mask) * self.n_motions)
else:
prior_loss_motion = 0
return dur_loss, prior_loss + prior_loss_motion, diff_loss + diff_loss_motion
def configure_optimizers(self) -> Any:
optimizer = self.hparams.optimizer(params=self.parameters())
return {'optimizer': optimizer}
def get_losses(self, batch):
pass
x, x_lengths = batch['x'], batch['x_lengths']
y, y_lengths = batch['y'], batch['y_lengths']
y_motion = batch['y_motion']
dur_loss, prior_loss, diff_loss = self(x, x_lengths, y, y_lengths, y_motion, out_size=self.out_size)
return {
'dur_loss': dur_loss,
'prior_loss': prior_loss,
'diff_loss': diff_loss,
}
def training_step(self, batch: Any, batch_idx: int):
loss_dict = self.get_losses(batch)
self.log('step', float(self.global_step), on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('sub_loss/train_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('sub_loss/train_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('sub_loss/train_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
total_loss = sum(loss_dict.values())
self.log('loss/train', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True)
return {'loss': total_loss, 'log': loss_dict }
def validation_step(self, batch: Any, batch_idx: int):
loss_dict = self.get_losses(batch)
self.log('sub_loss/val_dur_loss', loss_dict['dur_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('sub_loss/val_prior_loss', loss_dict['prior_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
self.log('sub_loss/val_diff_loss', loss_dict['diff_loss'], on_step=True, on_epoch=True, logger=True, sync_dist=True)
total_loss = sum(loss_dict.values())
self.log('loss/val', total_loss, on_step=True, on_epoch=True, logger=True, prog_bar=True, sync_dist=True)
return total_loss
def on_validation_end(self) -> None:
if self.trainer.is_global_zero:
one_batch = next(iter(self.trainer.val_dataloaders))
if self.current_epoch == 0:
log.debug("Plotting original samples")
for i in range(4):
y = one_batch['y'][i].unsqueeze(0).to(self.device)
y_motion = one_batch['y_motion'][i].unsqueeze(0).to(self.device)
self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y.squeeze().cpu()), self.current_epoch, dataformats='HWC')
if self.generate_motion:
self.logger.experiment.add_image(f'original/mel_{i}', plot_tensor(y_motion.squeeze().cpu()), self.current_epoch, dataformats='HWC')
log.debug(f'Synthesising...')
for i in range(4):
x = one_batch['x'][i].unsqueeze(0).to(self.device)
x_lengths = one_batch['x_lengths'][i].unsqueeze(0).to(self.device)
output = self.synthesise(x, x_lengths, n_timesteps=20)
y_enc, y_dec = output['encoder_outputs_mel'], output['decoder_outputs_mel']
y_motion_enc, y_motion_dec, attn = output['encoder_outputs_motion'], output['decoder_outputs_motion'], output['attn']
self.logger.experiment.add_image(f'generated_enc/{i}', plot_tensor(y_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC')
self.logger.experiment.add_image(f'generated_dec/{i}', plot_tensor(y_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC')
if self.generate_motion:
self.logger.experiment.add_image(f'generated_enc_motion/{i}', plot_tensor(y_motion_enc.squeeze().cpu()), self.current_epoch, dataformats='HWC')
self.logger.experiment.add_image(f'generated_dec_motion/{i}', plot_tensor(y_motion_dec.squeeze().cpu()), self.current_epoch, dataformats='HWC')
self.logger.experiment.add_image(f'alignment/{i}', plot_tensor(attn.squeeze().cpu()), self.current_epoch, dataformats='HWC')
|