File size: 4,526 Bytes
3c10b34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from typing import Any, Dict, Optional, Tuple

import torch
from lightning import LightningDataModule
from torch.utils.data import ConcatDataset, DataLoader, Dataset, random_split
from torchvision.datasets import MNIST
from torchvision.transforms import transforms


class MNISTDataModule(LightningDataModule):
    """Example of LightningDataModule for MNIST dataset.

    A DataModule implements 6 key methods:
        def prepare_data(self):
            # things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
            # download data, pre-process, split, save to disk, etc...
        def setup(self, stage):
            # things to do on every process in DDP
            # load data, set variables, etc...
        def train_dataloader(self):
            # return train dataloader
        def val_dataloader(self):
            # return validation dataloader
        def test_dataloader(self):
            # return test dataloader
        def teardown(self):
            # called on every process in DDP
            # clean up after fit or test

    This allows you to share a full dataset without explaining how to download,
    split, transform and process the data.

    Read the docs:
        https://lightning.ai/docs/pytorch/latest/data/datamodule.html
    """

    def __init__(
        self,
        data_dir: str = "data/",
        train_val_test_split: Tuple[int, int, int] = (55_000, 5_000, 10_000),
        batch_size: int = 64,
        num_workers: int = 0,
        pin_memory: bool = False,
    ):
        super().__init__()

        # this line allows to access init params with 'self.hparams' attribute
        # also ensures init params will be stored in ckpt
        self.save_hyperparameters(logger=False)

        # data transformations
        self.transforms = transforms.Compose(
            [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
        )

        self.data_train: Optional[Dataset] = None
        self.data_val: Optional[Dataset] = None
        self.data_test: Optional[Dataset] = None

    @property
    def num_classes(self):
        return 10

    def prepare_data(self):
        """Download data if needed.

        Do not use it to assign state (self.x = y).
        """
        MNIST(self.hparams.data_dir, train=True, download=True)
        MNIST(self.hparams.data_dir, train=False, download=True)

    def setup(self, stage: Optional[str] = None):
        """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.

        This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
        careful not to execute things like random split twice!
        """
        # load and split datasets only if not loaded already
        if not self.data_train and not self.data_val and not self.data_test:
            trainset = MNIST(self.hparams.data_dir, train=True, transform=self.transforms)
            testset = MNIST(self.hparams.data_dir, train=False, transform=self.transforms)
            dataset = ConcatDataset(datasets=[trainset, testset])
            self.data_train, self.data_val, self.data_test = random_split(
                dataset=dataset,
                lengths=self.hparams.train_val_test_split,
                generator=torch.Generator().manual_seed(42),
            )

    def train_dataloader(self):
        return DataLoader(
            dataset=self.data_train,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self):
        return DataLoader(
            dataset=self.data_val,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self):
        return DataLoader(
            dataset=self.data_test,
            batch_size=self.hparams.batch_size,
            num_workers=self.hparams.num_workers,
            pin_memory=self.hparams.pin_memory,
            shuffle=False,
        )

    def teardown(self, stage: Optional[str] = None):
        """Clean up after fit or test."""
        pass

    def state_dict(self):
        """Extra things to save to checkpoint."""
        return {}

    def load_state_dict(self, state_dict: Dict[str, Any]):
        """Things to do when loading checkpoint."""
        pass


if __name__ == "__main__":
    _ = MNISTDataModule()