from transformers import RobertaTokenizer, RobertaForSequenceClassification import torch import numpy as np class Model: def __init__(self, model_weights): self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base') self.model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=4) self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ✅ Load Lightning checkpoint checkpoint = torch.load(model_weights, map_location=self.device) state_dict = checkpoint.get("state_dict", checkpoint) # ✅ Remove 'model.' prefix used by LightningModule filtered_state_dict = { k.replace("model.", ""): v for k, v in state_dict.items() if k.startswith("model.") } # ✅ Load weights into Hugging Face model self.model.load_state_dict(filtered_state_dict, strict=False) self.currepoch = checkpoint.get("epoch", "N/A") self.loss = checkpoint.get("loss", "N/A") print(f"✅ Loaded model state — Epoch: {self.currepoch}, Loss: {self.loss}") self.model.to(self.device) self.model.eval() self.labels = ["Blocker", "Critical", "Major", "Minor"] def predict(self, text): inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) inputs = {k: v.to(self.device) for k, v in inputs.items()} with torch.no_grad(): outputs = self.model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=-1) predicted_label = self.labels[torch.argmax(probs).item()] return probs[0].tolist(), predicted_label # Singleton instance model_instance = None model_weights = "assets/roberta-priority-epoch=06-val_f1=0.72.ckpt" # Update path if needed def get_model(): global model_instance if model_instance is None: model_instance = Model(model_weights) return model_instance