shivamjadhav commited on
Commit
57299e8
·
1 Parent(s): d2262e3

updated readme

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -51,13 +51,12 @@ This research project builds a machine learning model that can **automatically a
51
  ## 📊 Dataset Statistics
52
 
53
  The dataset used for training consists of real-world accessibility bug reports, each labeled with one of four priority levels. The distribution of labels is imbalanced, and label-aware preprocessing steps were taken to improve model performance.
54
-
55
  | Label | Priority Level | Count |
56
  |-------|----------------|-------|
57
- | 1 | Medium | 2035 |
58
- | 2 | High | 1465 |
59
- | 0 | Low | 804 |
60
- | 3 | Critical | 756 |
61
 
62
  **Total Samples**: 5,060
63
 
@@ -75,10 +74,10 @@ The dataset consists of short bug report texts labeled with one of four priority
75
 
76
  | Label | Meaning |
77
  |-------|-------------|
78
- | 0 | Low |
79
- | 1 | Medium |
80
- | 2 | High |
81
- | 3 | Critical |
82
 
83
  ### ✏️ Sample Entries:
84
 
@@ -124,8 +123,8 @@ This model fine-tunes `roberta-base` using a 4-class custom dataset to classify
124
  from transformers import RobertaTokenizer, RobertaForSequenceClassification
125
  import torch
126
 
127
- model = RobertaForSequenceClassification.from_pretrained("your-username/roberta-priority-multiclass")
128
- tokenizer = RobertaTokenizer.from_pretrained("your-username/roberta-priority-multiclass")
129
 
130
  inputs = tokenizer("VoiceOver skips over text with <strong> tags", return_tensors="pt")
131
  outputs = model(**inputs)
 
51
  ## 📊 Dataset Statistics
52
 
53
  The dataset used for training consists of real-world accessibility bug reports, each labeled with one of four priority levels. The distribution of labels is imbalanced, and label-aware preprocessing steps were taken to improve model performance.
 
54
  | Label | Priority Level | Count |
55
  |-------|----------------|-------|
56
+ | 1 | Critical | 2035 |
57
+ | 2 | Major | 1465 |
58
+ | 0 | Blocker | 804 |
59
+ | 3 | Minor | 756 |
60
 
61
  **Total Samples**: 5,060
62
 
 
74
 
75
  | Label | Meaning |
76
  |-------|-------------|
77
+ | 0 | Blocker |
78
+ | 1 | Critical |
79
+ | 2 | Major |
80
+ | 3 | Minor |
81
 
82
  ### ✏️ Sample Entries:
83
 
 
123
  from transformers import RobertaTokenizer, RobertaForSequenceClassification
124
  import torch
125
 
126
+ model = RobertaForSequenceClassification.from_pretrained("shivamjadhav/roberta-priority-multiclass")
127
+ tokenizer = RobertaTokenizer.from_pretrained("shivamjadhav/roberta-priority-multiclass")
128
 
129
  inputs = tokenizer("VoiceOver skips over text with <strong> tags", return_tensors="pt")
130
  outputs = model(**inputs)