File size: 2,033 Bytes
7b41c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d16e2
7b41c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import numpy as np

class Model:
    def __init__(self, model_weights):
        self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        self.model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=4)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # βœ… Load Lightning checkpoint
        checkpoint = torch.load(model_weights, map_location=self.device)
        state_dict = checkpoint.get("state_dict", checkpoint)

        # βœ… Remove 'model.' prefix used by LightningModule
        filtered_state_dict = {
            k.replace("model.", ""): v
            for k, v in state_dict.items()
            if k.startswith("model.")
        }

        # βœ… Load weights into Hugging Face model
        self.model.load_state_dict(filtered_state_dict, strict=False)

        self.currepoch = checkpoint.get("epoch", "N/A")
        self.loss = checkpoint.get("loss", "N/A")

        print(f"βœ… Loaded model state β€” Epoch: {self.currepoch}, Loss: {self.loss}")

        self.model.to(self.device)
        self.model.eval()

        self.labels = ["Blocker", "Critical", "Major", "Minor"]

    def predict(self, text):
        inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
        inputs = {k: v.to(self.device) for k, v in inputs.items()}

        with torch.no_grad():
            outputs = self.model(**inputs)

        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=-1)
        predicted_label = self.labels[torch.argmax(probs).item()]
        return probs[0].tolist(), predicted_label

# Singleton instance
model_instance = None
model_weights = "assets/roberta-priority-epoch=06-val_f1=0.72.ckpt"  # Update path if needed

def get_model():
    global model_instance
    if model_instance is None:
        model_instance = Model(model_weights)
    return model_instance