import gradio as gr from transformers import pipeline print(gr. __version__) def summarize_article(article, model_name, max_length, temperature, top_k, top_p): summarizer = pipeline("summarization", model=model_name) top_k = int(round(top_k)) max_length = int(round(max_length)) summary = summarizer(article, max_length=max_length, min_length=30, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p) return summary[0]['summary_text'] iface = gr.Interface( fn=summarize_article, inputs=[ "text", gr.Dropdown(["Falconsai/text_summarization", "Other Models..."], label="Select Model"), gr.Slider(minimum=10, maximum=200, default=100, label="Max-Length"), gr.Slider(minimum=0.1, maximum=2, default=0.7, label="Temperature"), gr.Slider(minimum=1, maximum=100, default=50, label="Top-k"), gr.Slider(minimum=0.1, maximum=1, default=0.9, label="Top-p") ], outputs="text", title="Text Summarization with Hyperparameters", description="Enter an article, select a model, and adjust hyperparameters for summarization." ) iface.launch(debug=True)