import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForTokenClassification import warnings warnings.filterwarnings("ignore") class MultiModelIndianAddressNER: def __init__(self): # Available models configuration self.models_config = { "TinyBERT": { "name": "shiprocket-ai/open-tinybert-indian-address-ner", "description": "Lightweight and fast - 66.4M parameters", "base_model": "TinyBERT" }, "ModernBERT": { "name": "shiprocket-ai/open-modernbert-indian-address-ner", "description": "Modern architecture - 150M parameters", "base_model": "ModernBERT" }, "IndicBERT": { "name": "shiprocket-ai/open-indicbert-indian-address-ner", "description": "Indic language optimized - 32.9M parameters", "base_model": "IndicBERT" } } # Cache for loaded models self.loaded_models = {} self.loaded_tokenizers = {} self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Entity mappings (same for all models) self.id2entity = { "0": "O", "1": "B-building_name", "2": "I-building_name", "3": "B-city", "4": "I-city", "5": "B-country", "6": "I-country", "7": "B-floor", "8": "I-floor", "9": "B-house_details", "10": "I-house_details", "11": "B-locality", "12": "I-locality", "13": "B-pincode", "14": "I-pincode", "15": "B-road", "16": "I-road", "17": "B-state", "18": "I-state", "19": "B-sub_locality", "20": "I-sub_locality", "21": "B-landmarks", "22": "I-landmarks" } # Load default model (TinyBERT) self.load_model("TinyBERT") def load_model(self, model_key): """Load a specific model if not already loaded""" if model_key not in self.loaded_models: print(f"Loading {model_key} model...") model_name = self.models_config[model_key]["name"] try: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForTokenClassification.from_pretrained(model_name) model.to(self.device) model.eval() self.loaded_tokenizers[model_key] = tokenizer self.loaded_models[model_key] = model print(f"✅ {model_key} model loaded successfully!") except Exception as e: print(f"❌ Error loading {model_key}: {str(e)}") raise e return self.loaded_tokenizers[model_key], self.loaded_models[model_key] def predict(self, address, model_key="TinyBERT"): """Extract entities from an Indian address using specified model""" if not address.strip(): return {}, f"Using {model_key} model" try: # Load the selected model tokenizer, model = self.load_model(model_key) # Different approaches based on tokenizer type if model_key == "IndicBERT": # IndicBERT uses SentencePiece - use token-based approach entities = self._predict_token_based(address, tokenizer, model) else: # TinyBERT and ModernBERT - use offset mapping approach entities = self._predict_offset_based(address, tokenizer, model) model_info = f"Using {model_key} ({self.models_config[model_key]['description']})" return entities, model_info except Exception as e: return {}, f"Error with {model_key}: {str(e)}" def _predict_offset_based(self, address, tokenizer, model): """Offset-based prediction for TinyBERT and ModernBERT""" inputs = tokenizer( address, return_tensors="pt", truncation=True, padding=True, max_length=128, return_offsets_mapping=True ) # Extract offset mapping before moving to device offset_mapping = inputs.pop("offset_mapping")[0] inputs = {k: v.to(self.device) for k, v in inputs.items()} # Predict with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_ids = torch.argmax(predictions, dim=-1) confidence_scores = torch.max(predictions, dim=-1)[0] # Extract entities using offset mapping return self.extract_entities_with_offsets( address, predicted_ids[0], confidence_scores[0], offset_mapping ) def _predict_token_based(self, address, tokenizer, model): """Token-based prediction for IndicBERT (SentencePiece)""" inputs = tokenizer( address, return_tensors="pt", truncation=True, padding=True, max_length=128 ) inputs = {k: v.to(self.device) for k, v in inputs.items()} # Predict with torch.no_grad(): outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_ids = torch.argmax(predictions, dim=-1) confidence_scores = torch.max(predictions, dim=-1)[0] # Convert to tokens and labels tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) predicted_labels = [self.id2entity.get(str(id.item()), "O") for id in predicted_ids[0]] confidences = confidence_scores[0].cpu().numpy() # Group entities with proper text reconstruction return self.group_entities_sentencepiece(tokens, predicted_labels, confidences) def extract_entities_with_offsets(self, original_text, predicted_ids, confidences, offset_mapping): """Extract entities using offset mapping for accurate text reconstruction""" entities = {} current_entity = None for i, (pred_id, conf) in enumerate(zip(predicted_ids, confidences)): if i >= len(offset_mapping): break start, end = offset_mapping[i] # Skip special tokens (they have (0,0) mapping) if start == end == 0: continue label = self.id2entity.get(str(pred_id.item()), "O") if label.startswith("B-"): # Save previous entity if current_entity: entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] entities[entity_type].append({ "text": current_entity["text"], "confidence": current_entity["confidence"] }) # Start new entity entity_type = label[2:] # Remove "B-" current_entity = { "type": entity_type, "text": original_text[start:end], "confidence": conf.item(), "start": start, "end": end } elif label.startswith("I-") and current_entity: # Continue current entity entity_type = label[2:] # Remove "I-" if entity_type == current_entity["type"]: # Extend the entity to include this token current_entity["text"] = original_text[current_entity["start"]:end] current_entity["confidence"] = (current_entity["confidence"] + conf.item()) / 2 current_entity["end"] = end elif label == "O" and current_entity: # End current entity entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] entities[entity_type].append({ "text": current_entity["text"], "confidence": current_entity["confidence"] }) current_entity = None # Add final entity if exists if current_entity: entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] entities[entity_type].append({ "text": current_entity["text"], "confidence": current_entity["confidence"] }) return entities def group_entities_sentencepiece(self, tokens, labels, confidences): """Group entities for SentencePiece tokenization (IndicBERT) with proper text reconstruction""" entities = {} current_entity = None for i, (token, label, conf) in enumerate(zip(tokens, labels, confidences)): if token in ["", "", "", ""]: continue if label.startswith("B-"): # Save previous entity if current_entity: entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] # Clean up the text by removing SentencePiece markers and extra spaces clean_text = self._clean_sentencepiece_text(current_entity["text"]) entities[entity_type].append({ "text": clean_text, "confidence": current_entity["confidence"] }) # Start new entity - handle SentencePiece format entity_type = label[2:] # Remove "B-" clean_token = token.replace("▁", " ").strip() current_entity = { "type": entity_type, "text": clean_token, "confidence": conf } elif label.startswith("I-") and current_entity: # Continue current entity entity_type = label[2:] # Remove "I-" if entity_type == current_entity["type"]: # Handle SentencePiece subword continuation if token.startswith("▁"): # New word boundary current_entity["text"] += " " + token.replace("▁", "") else: # Subword continuation current_entity["text"] += token current_entity["confidence"] = (current_entity["confidence"] + conf) / 2 elif label == "O" and current_entity: # End current entity entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] clean_text = self._clean_sentencepiece_text(current_entity["text"]) entities[entity_type].append({ "text": clean_text, "confidence": current_entity["confidence"] }) current_entity = None # Add final entity if exists if current_entity: entity_type = current_entity["type"] if entity_type not in entities: entities[entity_type] = [] clean_text = self._clean_sentencepiece_text(current_entity["text"]) entities[entity_type].append({ "text": clean_text, "confidence": current_entity["confidence"] }) return entities def _clean_sentencepiece_text(self, text): """Clean SentencePiece text by removing markers and fixing spacing""" # Remove SentencePiece markers clean_text = text.replace("▁", " ") # Remove extra spaces and clean up clean_text = " ".join(clean_text.split()) # Remove trailing commas and spaces clean_text = clean_text.strip().rstrip(",").strip() return clean_text # Initialize the multi-model system print("Initializing Multi-Model Indian Address NER...") ner_system = MultiModelIndianAddressNER() print("System ready!") def process_address(address_text, selected_model): """Process address and return formatted results with selected model""" if not address_text.strip(): return "Please enter an address to analyze." try: # Extract entities using selected model entities, model_info = ner_system.predict(address_text, selected_model) if not entities: return f"❌ No entities found in the provided address.\n\n**{model_info}**" # Format results result = f"📍 **Input Address:** {address_text}\n\n" result += f"🤖 **{model_info}**\n\n" result += "🏷️ **Extracted Entities:**\n\n" # Sort entities by type for better presentation entity_order = [ 'building_name', 'floor', 'house_details', 'road', 'sub_locality', 'locality', 'landmarks', 'city', 'state', 'country', 'pincode' ] displayed_entities = set() # Display entities in order for entity_type in entity_order: if entity_type in entities and entity_type not in displayed_entities: result += f"**{entity_type.replace('_', ' ').title()}:**\n" for entity in entities[entity_type]: confidence = entity['confidence'] text = entity['text'] confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴" result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n" result += "\n" displayed_entities.add(entity_type) # Display any remaining entities for entity_type, entity_list in entities.items(): if entity_type not in displayed_entities: result += f"**{entity_type.replace('_', ' ').title()}:**\n" for entity in entity_list: confidence = entity['confidence'] text = entity['text'] confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴" result += f" {confidence_icon} {text} (confidence: {confidence:.3f})\n" result += "\n" result += "\n**Legend:**\n" result += "🟢 High confidence (>0.8)\n" result += "🟡 Medium confidence (0.6-0.8)\n" result += "🔴 Low confidence (<0.6)\n" return result except Exception as e: return f"❌ Error processing address: {str(e)}" def compare_models(address_text): """Compare results from all models""" if not address_text.strip(): return "Please enter an address to compare models." result = f"📍 **Address:** {address_text}\n\n" result += "🔄 **Model Comparison:**\n\n" for model_key in ner_system.models_config.keys(): try: entities, model_info = ner_system.predict(address_text, model_key) result += f"### {model_key}\n" result += f"*{ner_system.models_config[model_key]['description']}*\n\n" if entities: entity_count = sum(len(entity_list) for entity_list in entities.values()) result += f"**Found {entity_count} entities:**\n" for entity_type, entity_list in sorted(entities.items()): for entity in entity_list: confidence = entity['confidence'] text = entity['text'] confidence_icon = "🟢" if confidence > 0.8 else "🟡" if confidence > 0.6 else "🔴" result += f" {confidence_icon} {entity_type}: {text} ({confidence:.3f})\n" else: result += "❌ No entities found\n" result += "\n---\n\n" except Exception as e: result += f"### {model_key}\n❌ Error: {str(e)}\n\n---\n\n" return result # Sample addresses for examples sample_addresses = [ "Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058", "DLF Cyber City, Sector 25, Gurgaon, Haryana", "Flat 201, MG Road, Bangalore, Karnataka, 560001", "Phoenix Mall, Kurla West, Mumbai", "House No 456, Green Park Extension, New Delhi, 110016", "Office 302, Tech Park, Electronic City, Bangalore, Karnataka, 560100" ] # Create Gradio interface with gr.Blocks(title="Multi-Model Indian Address NER", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # 🏠 Multi-Model Indian Address Named Entity Recognition Compare different transformer models for extracting components from Indian addresses. Choose between TinyBERT (fast), ModernBERT (modern), and IndicBERT (Indic-optimized). **Supported entities:** Building Name, Floor, House Details, Road, Sub-locality, Locality, Landmarks, City, State, Country, Pincode """) with gr.Tab("Single Model Analysis"): with gr.Row(): with gr.Column(scale=1): model_dropdown = gr.Dropdown( choices=list(ner_system.models_config.keys()), value="TinyBERT", label="Select Model", info="Choose which model to use for entity extraction" ) address_input = gr.Textbox( label="Enter Indian Address", placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058", lines=3, max_lines=5 ) submit_btn = gr.Button("🔍 Extract Entities", variant="primary") gr.Markdown("### 📝 Sample Addresses (click to use):") sample_buttons = [] for addr in sample_addresses: btn = gr.Button(addr, size="sm") btn.click(fn=lambda x=addr: x, outputs=address_input) sample_buttons.append(btn) with gr.Column(scale=1): output_text = gr.Markdown( label="Extracted Entities", value="Select a model, enter an address, and click 'Extract Entities' to see the results." ) # Event handlers for single model submit_btn.click( fn=process_address, inputs=[address_input, model_dropdown], outputs=output_text ) address_input.submit( fn=process_address, inputs=[address_input, model_dropdown], outputs=output_text ) with gr.Tab("Model Comparison"): with gr.Row(): with gr.Column(scale=1): address_compare = gr.Textbox( label="Enter Indian Address for Comparison", placeholder="e.g., Shop No 123, Sunshine Apartments, Andheri West, Mumbai, 400058", lines=3, max_lines=5 ) compare_btn = gr.Button("🔄 Compare All Models", variant="secondary") gr.Markdown("### 📝 Sample Addresses (click to use):") sample_buttons_compare = [] for addr in sample_addresses: btn = gr.Button(addr, size="sm") btn.click(fn=lambda x=addr: x, outputs=address_compare) sample_buttons_compare.append(btn) with gr.Column(scale=1): comparison_output = gr.Markdown( label="Model Comparison Results", value="Enter an address and click 'Compare All Models' to see how different models perform." ) # Event handlers for comparison compare_btn.click( fn=compare_models, inputs=address_compare, outputs=comparison_output ) address_compare.submit( fn=compare_models, inputs=address_compare, outputs=comparison_output ) with gr.Tab("Model Information"): gr.Markdown(""" ## 📊 Available Models ### TinyBERT - **Base Model**: huawei-noah/TinyBERT_General_6L_768D - **Model Size**: ~66.4M parameters - **Advantages**: Fastest inference, lowest memory usage, mobile-friendly - **Best for**: Real-time applications, edge deployment ### ModernBERT - **Base Model**: answerdotai/ModernBERT-base - **Model Size**: ~150M parameters - **Advantages**: Latest architectural improvements, balanced performance - **Best for**: High-accuracy requirements with reasonable speed ### IndicBERT - **Base Model**: ai4bharat/indic-bert - **Model Size**: ~32.9M parameters - **Advantages**: Optimized for Indian languages and contexts - **Best for**: Mixed language addresses, regional Indian contexts ## 🎯 Entity Types Supported All models can extract the following entities: - **Building Name**: Apartment/building names - **Floor**: Floor numbers and details - **House Details**: House/flat numbers - **Road**: Street and road names - **Sub-locality**: Sector, block details - **Locality**: Area, neighborhood names - **Landmarks**: Notable nearby locations - **City**: City names - **State**: State names - **Country**: Country names - **Pincode**: Postal codes """) gr.Markdown(""" --- **Models:** - [TinyBERT](https://huggingface.co/shiprocket-ai/open-tinybert-indian-address-ner) | [ModernBERT](https://huggingface.co/shiprocket-ai/open-modernbert-indian-address-ner) | [IndicBERT](https://huggingface.co/shiprocket-ai/open-indicbert-indian-address-ner) **About:** These models are specifically trained on Indian address patterns and can handle various formats and styles common in Indian addresses. """) if __name__ == "__main__": demo.launch()