Spaces:
Runtime error
Runtime error
File size: 6,246 Bytes
e82dff2 3b61cce 7617596 3b61cce ad3ee60 3b61cce a8797f1 53b7b42 a8797f1 53b7b42 bd0d673 3b61cce 0312353 3b61cce 19327c9 3b61cce 0312353 3b61cce 0312353 3b61cce 0312353 3b61cce a8797f1 3b61cce a8797f1 ad3ee60 0312353 6eaf487 7617596 fb94f78 7617596 6eaf487 7617596 fb94f78 7617596 0312353 fb14311 fb94f78 6eaf487 fb94f78 6eaf487 53b7b42 6eaf487 fb94f78 6eaf487 fb94f78 6eaf487 53b7b42 fb94f78 6eaf487 7617596 0312353 7617596 fb94f78 3b61cce 7617596 fb94f78 7617596 0312353 7617596 0312353 7617596 3b61cce fb94f78 7617596 fb94f78 ad3ee60 19327c9 fb94f78 53b7b42 19327c9 53b7b42 fb94f78 53b7b42 fb94f78 53b7b42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from __future__ import annotations
import os
import pathlib
import shlex
import shutil
import subprocess
import sys
import cv2
import torch
from label_prettify import label_prettify
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'prismer'
sys.path.insert(0, submodule_dir.as_posix())
from dataset import create_dataset, create_loader
from dataset.utils import pre_question
from model.prismer_caption import PrismerCaption
from model.prismer_vqa import PrismerVQA
def download_models() -> None:
if not pathlib.Path('prismer/experts/expert_weights/').exists():
subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer')
model_names = [
'vqa_prismer_base',
'vqa_prismer_large',
'pretrain_prismer_base',
'pretrain_prismer_large',
]
for model_name in model_names:
if pathlib.Path(f'prismer/logging/{model_name}').exists():
continue
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')
def build_deformable_conv() -> None:
subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
def run_experts(image_path: str) -> tuple[str | None, ...]:
helper_dir = submodule_dir / 'helpers'
shutil.rmtree(helper_dir, ignore_errors=True)
image_dir = helper_dir / 'images'
image_dir.mkdir(parents=True, exist_ok=True)
out_path = image_dir / 'image.jpg'
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
for expert_name in expert_names:
env = os.environ.copy()
if 'PYTHONPATH' in env:
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
else:
env['PYTHONPATH'] = submodule_dir.as_posix()
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True)
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
return tuple(path.as_posix() for path in results)
class Model:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.model_name = ''
self.exp_name = ''
self.mode = ''
def set_model(self, exp_name: str, mode: str) -> None:
if exp_name == self.exp_name and mode == self.mode:
return
# load checkpoints
model_name = exp_name.lower().replace('-', '_')
if self.mode == 'caption':
config = {
'dataset': 'demo',
'data_path': 'prismer/helpers',
'label_path': 'prismer/helpers/labels',
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
'image_resolution': 480,
'prismer_model': model_name,
'freeze': 'freeze_vision',
'prefix': '',
}
model = PrismerCaption(config)
state_dict = torch.load(f'prismer/logging/pretrain_{model_name}/pytorch_model.bin', map_location='cuda:0')
elif self.mode == 'vqa':
config = {
'dataset': 'demo',
'data_path': 'prismer/helpers',
'label_path': 'prismer/helpers/labels',
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
'image_resolution': 480,
'prismer_model': model_name,
'freeze': 'freeze_vision',
}
model = PrismerVQA(config)
state_dict = torch.load(f'prismer/logging/vqa_{model_name}/pytorch_model.bin', map_location='cuda:0')
model.load_state_dict(state_dict)
model.eval()
self.config = config
self.model = model
self.tokenizer = model.tokenizer
self.exp_name = exp_name
self.mode = mode
@torch.inference_mode()
def run_caption_model(self, exp_name: str, mode: str) -> str:
self.set_model(exp_name, mode)
_, test_dataset = create_dataset('caption', self.config)
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
experts, _ = next(iter(test_loader))
captions = self.model(experts, train=False, prefix=self.config['prefix'])
captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
caption = captions.to(experts['rgb'].device)[0]
caption = self.tokenizer.decode(caption, skip_special_tokens=True)
caption = caption.capitalize() + '.'
return caption
def run_caption(self, image_path: str, model_name: str, mode: str) -> tuple[str | None, ...]:
out_paths = run_experts(image_path)
caption = self.run_caption_model(model_name, mode)
label_prettify(image_path, out_paths)
return caption, *out_paths
@torch.inference_mode()
def run_vqa_model(self, exp_name: str, mode: str, question: str) -> str:
self.set_model(exp_name, mode)
_, test_dataset = create_dataset('caption', self.config)
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
experts, _ = next(iter(test_loader))
question = pre_question(question)
answer = self.model(experts, question, train=False, inference='generate')
answer = self.tokenizer(answer, max_length=30, padding='max_length', return_tensors='pt').input_ids
answer = answer.to(experts['rgb'].device)[0]
answer = self.tokenizer.decode(answer, skip_special_tokens=True)
answer = answer.capitalize() + '.'
return answer
def run_vqa(self, image_path: str, model_name: str, mode: str, question: str) -> tuple[str | None, ...]:
out_paths = run_experts(image_path)
answer = self.run_vqa_model(model_name, mode, question)
label_prettify(image_path, out_paths)
return answer, *out_paths
|