File size: 4,199 Bytes
e82dff2
 
3b61cce
 
 
 
 
 
7617596
3b61cce
 
 
 
 
a8797f1
 
 
 
bd0d673
3b61cce
 
 
818a4f8
 
3b61cce
818a4f8
 
7617596
 
3b61cce
 
 
 
818a4f8
3b61cce
 
 
818a4f8
3b61cce
 
 
 
 
 
 
 
 
 
818a4f8
3b61cce
 
 
a8797f1
3b61cce
a8797f1
361ea77
7617596
818a4f8
361ea77
 
7617596
 
 
 
 
 
 
 
 
 
 
 
 
61a0078
 
 
 
 
 
 
 
7617596
 
 
 
 
 
 
 
 
 
 
 
 
3b61cce
7617596
 
 
 
61a0078
7617596
61a0078
 
7617596
 
 
 
3b61cce
61a0078
7617596
361ea77
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from __future__ import annotations

import os
import pathlib
import shlex
import shutil
import subprocess
import sys

import cv2
import torch

repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'prismer'
sys.path.insert(0, submodule_dir.as_posix())

from dataset import create_dataset, create_loader
from model.prismer_caption import PrismerCaption


def download_models() -> None:
    if not pathlib.Path('prismer/experts/expert_weights/').exists():
        subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer')

    model_names = [
        # 'vqa_prismer_base',
        # 'vqa_prismer_large',
        'caption_prismer_base',
        'caption_prismer_large',
    ]
    for model_name in model_names:
        if pathlib.Path(f'prismer/logging/{model_name}').exists():
            continue
        subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')


def build_deformable_conv() -> None:
    subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')


def run_experts(image_path: str) -> tuple[str | None, ...]:
    helper_dir = submodule_dir / 'helpers'
    shutil.rmtree(helper_dir, ignore_errors=True)
    image_dir = helper_dir / 'images'
    image_dir.mkdir(parents=True, exist_ok=True)
    out_path = image_dir / 'image.jpg'
    cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))

    expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
    for expert_name in expert_names:
        env = os.environ.copy()
        if 'PYTHONPATH' in env:
            env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
        else:
            env['PYTHONPATH'] = submodule_dir.as_posix()
        subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True)

    keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
    results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
    return tuple(path.as_posix() if path.exists() else None for path in results)


class Model:
    def __init__(self):
        self.config = None
        self.model = None
        self.tokenizer = None
        self.exp_name = ''

    def set_model(self, exp_name: str) -> None:
        if exp_name == self.exp_name:
            return
        config = {
            'dataset': 'demo',
            'data_path': 'prismer/helpers',
            'label_path': 'prismer/helpers/labels',
            'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
            'image_resolution': 480,
            'prismer_model': 'prismer_base',
            'freeze': 'freeze_vision',
            'prefix': 'A picture of',
        }
        model = PrismerCaption(config)
        state_dict = torch.load(
            f'prismer/logging/caption_{exp_name}/pytorch_model.bin',
            map_location='cuda:0')
        model.load_state_dict(state_dict)
        model.eval()
        tokenizer = model.tokenizer

        self.config = config
        self.model = model
        self.tokenizer = tokenizer
        self.exp_name = exp_name

    @torch.inference_mode()
    def run_caption_model(self, exp_name: str) -> str:
        self.set_model(exp_name)
        _, test_dataset = create_dataset('caption', self.config)
        test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
        experts, _ = next(iter(test_loader))
        captions = self.model(experts, train=False, prefix=self.config['prefix'])
        captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
        caption = captions.to(experts['rgb'].device)[0]
        caption = self.tokenizer.decode(caption, skip_special_tokens=True)
        caption = caption.capitalize() + '.'
        return caption

    def run_caption(self, image_path: str, model_name: str) -> tuple[str | None, ...]:
        out_paths = run_experts(image_path)
        # caption = self.run_caption_model(model_name)
        return None, *out_paths