Spaces:
Runtime error
Runtime error
File size: 4,199 Bytes
e82dff2 3b61cce 7617596 3b61cce a8797f1 bd0d673 3b61cce 818a4f8 3b61cce 818a4f8 7617596 3b61cce 818a4f8 3b61cce 818a4f8 3b61cce 818a4f8 3b61cce a8797f1 3b61cce a8797f1 361ea77 7617596 818a4f8 361ea77 7617596 61a0078 7617596 3b61cce 7617596 61a0078 7617596 61a0078 7617596 3b61cce 61a0078 7617596 361ea77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from __future__ import annotations
import os
import pathlib
import shlex
import shutil
import subprocess
import sys
import cv2
import torch
repo_dir = pathlib.Path(__file__).parent
submodule_dir = repo_dir / 'prismer'
sys.path.insert(0, submodule_dir.as_posix())
from dataset import create_dataset, create_loader
from model.prismer_caption import PrismerCaption
def download_models() -> None:
if not pathlib.Path('prismer/experts/expert_weights/').exists():
subprocess.run(shlex.split('python download_checkpoints.py --download_experts=True'), cwd='prismer')
model_names = [
# 'vqa_prismer_base',
# 'vqa_prismer_large',
'caption_prismer_base',
'caption_prismer_large',
]
for model_name in model_names:
if pathlib.Path(f'prismer/logging/{model_name}').exists():
continue
subprocess.run(shlex.split(f'python download_checkpoints.py --download_models={model_name}'), cwd='prismer')
def build_deformable_conv() -> None:
subprocess.run(shlex.split('sh make.sh'), cwd='prismer/experts/segmentation/mask2former/modeling/pixel_decoder/ops')
def run_experts(image_path: str) -> tuple[str | None, ...]:
helper_dir = submodule_dir / 'helpers'
shutil.rmtree(helper_dir, ignore_errors=True)
image_dir = helper_dir / 'images'
image_dir.mkdir(parents=True, exist_ok=True)
out_path = image_dir / 'image.jpg'
cv2.imwrite(out_path.as_posix(), cv2.imread(image_path))
expert_names = ['depth', 'edge', 'normal', 'objdet', 'ocrdet', 'segmentation']
for expert_name in expert_names:
env = os.environ.copy()
if 'PYTHONPATH' in env:
env['PYTHONPATH'] = f'{submodule_dir.as_posix()}:{env["PYTHONPATH"]}'
else:
env['PYTHONPATH'] = submodule_dir.as_posix()
subprocess.run(shlex.split(f'python experts/generate_{expert_name}.py'), cwd='prismer', env=env, check=True)
keys = ['depth', 'edge', 'normal', 'seg_coco', 'obj_detection', 'ocr_detection']
results = [pathlib.Path('prismer/helpers/labels') / key / 'helpers/images/image.png' for key in keys]
return tuple(path.as_posix() if path.exists() else None for path in results)
class Model:
def __init__(self):
self.config = None
self.model = None
self.tokenizer = None
self.exp_name = ''
def set_model(self, exp_name: str) -> None:
if exp_name == self.exp_name:
return
config = {
'dataset': 'demo',
'data_path': 'prismer/helpers',
'label_path': 'prismer/helpers/labels',
'experts': ['depth', 'normal', 'seg_coco', 'edge', 'obj_detection', 'ocr_detection'],
'image_resolution': 480,
'prismer_model': 'prismer_base',
'freeze': 'freeze_vision',
'prefix': 'A picture of',
}
model = PrismerCaption(config)
state_dict = torch.load(
f'prismer/logging/caption_{exp_name}/pytorch_model.bin',
map_location='cuda:0')
model.load_state_dict(state_dict)
model.eval()
tokenizer = model.tokenizer
self.config = config
self.model = model
self.tokenizer = tokenizer
self.exp_name = exp_name
@torch.inference_mode()
def run_caption_model(self, exp_name: str) -> str:
self.set_model(exp_name)
_, test_dataset = create_dataset('caption', self.config)
test_loader = create_loader(test_dataset, batch_size=1, num_workers=4, train=False)
experts, _ = next(iter(test_loader))
captions = self.model(experts, train=False, prefix=self.config['prefix'])
captions = self.tokenizer(captions, max_length=30, padding='max_length', return_tensors='pt').input_ids
caption = captions.to(experts['rgb'].device)[0]
caption = self.tokenizer.decode(caption, skip_special_tokens=True)
caption = caption.capitalize() + '.'
return caption
def run_caption(self, image_path: str, model_name: str) -> tuple[str | None, ...]:
out_paths = run_experts(image_path)
# caption = self.run_caption_model(model_name)
return None, *out_paths
|