Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import os | |
import uuid | |
import torch | |
from .constants import ( | |
AUD_END_TOKEN, | |
AUD_START_TOKEN, | |
AUD_TAG_TOKEN, | |
BOX_END_TOKEN, | |
BOX_START_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
IMG_END_TOKEN, | |
IMG_START_TOKEN, | |
IMG_TAG_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_START_TOKEN, | |
QUAD_END_TOKEN, | |
QUAD_START_TOKEN, | |
REF_END_TOKEN, | |
REF_START_TOKEN, | |
VID_CONTEXT_TOKEN, | |
VID_END_TOKEN, | |
VID_START_TOKEN, | |
VID_TAG_TOKEN, | |
) | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
def update_tokenizer_for_cosyvoice2(tokenizer): | |
token_list = [ | |
IMG_START_TOKEN, | |
IMG_END_TOKEN, | |
IMG_CONTEXT_TOKEN, | |
VID_START_TOKEN, | |
VID_END_TOKEN, | |
VID_CONTEXT_TOKEN, | |
PATCH_START_TOKEN, | |
PATCH_END_TOKEN, | |
PATCH_CONTEXT_TOKEN, | |
AUD_START_TOKEN, | |
AUD_END_TOKEN, | |
QUAD_START_TOKEN, | |
QUAD_END_TOKEN, | |
REF_START_TOKEN, | |
REF_END_TOKEN, | |
BOX_START_TOKEN, | |
BOX_END_TOKEN, | |
IMG_TAG_TOKEN, | |
VID_TAG_TOKEN, | |
AUD_TAG_TOKEN, | |
] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True) | |
token_list = [f"<|audio_{i}|>" for i in range(6561)] | |
num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False) | |
# logger.info(f"tokenizer {tokenizer}") | |
return tokenizer | |
class CosyVoice2Tokenizer: | |
def __init__(self, model_name_or_path, rank=None): | |
self.model_name_or_path = model_name_or_path | |
if rank is None and torch.distributed.is_initialized(): | |
rank = torch.distributed.get_rank() | |
self.rank = rank % 8 | |
else: | |
self.rank = rank | |
logger.info(f"{self.rank=}") | |
self.is_discrete = True | |
self.is_contiguous = False | |
# T A | |
text_audio_interval_ratio = [13, 26] | |
self.text_audio_interval_ratio = text_audio_interval_ratio | |
def load_model(self): | |
if hasattr(self, "cosyvoice"): | |
return | |
logger.info("Loading CosyVoice2Tokenizer") | |
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2 | |
from cosyvoice.utils.file_utils import load_wav | |
if self.rank is not None: | |
torch.cuda.set_device(self.rank) | |
else: | |
import os | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
print(f"{self.rank}") | |
self.cosyvoice = CosyVoice2( | |
self.model_name_or_path, load_jit=False, load_trt=False, fp16=True | |
) | |
del self.cosyvoice.model.llm | |
self.load_wav = load_wav | |
def encode(self, audio_path, **kwargs): | |
if not hasattr(self, "cosyvoice"): | |
self.load_model() | |
speech_16k = self.load_wav(audio_path, 16000) | |
try: | |
speech_token, speech_token_len = self.cosyvoice.frontend._extract_speech_token( | |
speech_16k | |
) | |
speech_token = speech_token[0].cpu().tolist() | |
except Exception as error: | |
# logger.info("error", error) | |
speech_token = [] | |
# logger.info(f"speech_token {speech_token}") | |
return speech_token | |
def decode(self, prompt_speech_token, source_speech_16k=None): | |
if not hasattr(self, "cosyvoice"): | |
self.load_model() | |
prompt_speech_token = torch.tensor(prompt_speech_token).unsqueeze(0) | |
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32) | |
prompt_speech_feat = torch.zeros(1, 0, 80) | |
if source_speech_16k is None: | |
flow_embedding = torch.zeros(1, 192) | |
else: | |
flow_embedding = self.cosyvoice.frontend._extract_spk_embedding(source_speech_16k) | |
this_uuid = str(uuid.uuid1()) | |
this_uuid = "abc" | |
self.cosyvoice.model.hift_cache_dict[this_uuid] = None | |
token_offset = 0 | |
tts_speech = self.cosyvoice.model.token2wav( | |
token=prompt_speech_token, | |
prompt_token=flow_prompt_speech_token, | |
prompt_feat=prompt_speech_feat, | |
embedding=flow_embedding, | |
uuid=this_uuid, | |
token_offset=token_offset, | |
finalize=True, | |
) | |
tts_speech = tts_speech.squeeze().cpu() | |
return tts_speech | |
def apply_to_role(self, role, **kwargs): | |
is_discrete = kwargs.get("is_discrete", False) | |
if is_discrete: | |
return True | |
is_contiguous = kwargs.get("is_contiguous", False) | |
if is_contiguous: | |
return False | |
return True | |