File size: 9,821 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e0adab
52e4f53
 
 
 
2e51c14
 
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import glob
import io
import logging
import math
import os
import tarfile
import uuid

import safetensors
import torch
from transformers import WhisperFeatureExtractor, WhisperTokenizerFast

import torchaudio

from transformers import WhisperFeatureExtractor
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
from flow_inference import AudioDecoder

from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from funasr.models.sense_voice.model import SenseVoiceSmall

from .constants import (
    AUD_CONTEXT_TOKEN,
    AUD_END_TOKEN,
    AUD_START_TOKEN,
    AUD_TAG_TOKEN,
    BOX_END_TOKEN,
    BOX_START_TOKEN,
    IMG_CONTEXT_TOKEN,
    IMG_END_TOKEN,
    IMG_START_TOKEN,
    IMG_TAG_TOKEN,
    PATCH_CONTEXT_TOKEN,
    PATCH_END_TOKEN,
    PATCH_START_TOKEN,
    QUAD_END_TOKEN,
    QUAD_START_TOKEN,
    REF_END_TOKEN,
    REF_START_TOKEN,
    VID_CONTEXT_TOKEN,
    VID_END_TOKEN,
    VID_START_TOKEN,
    VID_TAG_TOKEN,
)

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def update_tokenizer_for_sensevoice_glm4voice(tokenizer):
    token_list = [
        IMG_START_TOKEN,
        IMG_END_TOKEN,
        IMG_CONTEXT_TOKEN,
        VID_START_TOKEN,
        VID_END_TOKEN,
        VID_CONTEXT_TOKEN,
        PATCH_START_TOKEN,
        PATCH_END_TOKEN,
        PATCH_CONTEXT_TOKEN,
        AUD_START_TOKEN,
        AUD_END_TOKEN,
        AUD_CONTEXT_TOKEN,
        QUAD_START_TOKEN,
        QUAD_END_TOKEN,
        REF_START_TOKEN,
        REF_END_TOKEN,
        BOX_START_TOKEN,
        BOX_END_TOKEN,
        IMG_TAG_TOKEN,
        VID_TAG_TOKEN,
        AUD_TAG_TOKEN,
    ]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=True)

    token_list = [f"<|audio_{i}|>" for i in range(16384)]
    num_new_tokens = tokenizer.add_tokens(token_list, special_tokens=False)

    # logger.info(f"tokenizer {tokenizer}")
    return tokenizer


class SenseVoiceGLM4VoiceTokenizer:
    def __init__(self, model_name_or_path, flow_path=None, rank=None):
        self.model_name_or_path = model_name_or_path
        self.flow_path = flow_path

        if rank is None and torch.distributed.is_initialized():
            rank = torch.distributed.get_rank()
            self.rank = rank % 8
        else:
            self.rank = rank
        logger.info(f"{self.rank=}")

        self.sample_rate = 16000

        self.is_discrete = True
        self.is_contiguous = True

        # #                            T   A
        # text_audio_interval_ratio = [13, 26]
        # #                            T  A  T  A  T  A
        # text_audio_interval_ratio = [1, 4, 3, 8, 4, 10]
        # #                            T  A   T  A
        # text_audio_interval_ratio = [1, 10, 4, 10]

        # self.text_audio_interval_ratio = text_audio_interval_ratio

    def load_model(self):
        if hasattr(self, "whisper_model"):
            return

        import faulthandler
        faulthandler.enable()

        if self.rank is not None:
            self.device = f"cuda:{self.rank}"
            #torch.cuda.set_device(self.rank)
        else:
            self.device = "cpu"

        logger.info(f"{self.device=} Loading SenseVoiceSmall")
        from huggingface_hub import snapshot_download
        model_dir = snapshot_download(repo_id="FunAudioLLM/SenseVoiceSmall")
        _, self.kwargs = SenseVoiceSmall.from_pretrained(model=model_dir, device=self.device)
        logger.info(f"{self.device=} Loading SenseVoiceSmall Done")

        logger.info(f"{self.device=} Loading GLM4VoiceTokenizer")
        self.whisper_model = (
            WhisperVQEncoder.from_pretrained(self.model_name_or_path).eval().to(self.device)
        )
        self.feature_extractor = WhisperFeatureExtractor.from_pretrained(self.model_name_or_path)

        if self.flow_path is not None:
            flow_config = os.path.join(self.flow_path, "config.yaml")
            flow_checkpoint = os.path.join(self.flow_path, "flow.pt")
            hift_checkpoint = os.path.join(self.flow_path, "hift.pt")

            # Flow & Hift
            self.audio_decoder = AudioDecoder(
                config_path=flow_config,
                flow_ckpt_path=flow_checkpoint,
                hift_ckpt_path=hift_checkpoint,
                device=self.device,
            )
        logger.info(f"{self.device=} Loading GLM4VoiceTokenizer Done")

    def encode(self, audio_path, is_discrete=False, is_contiguous=True, **kwargs):
        if not hasattr(self, "whisper_model"):
            self.load_model()

        assert not (is_discrete and is_contiguous)
        assert is_discrete or is_contiguous

        if is_discrete:
            audio_tokens = extract_speech_token(
                self.whisper_model, self.feature_extractor, [audio_path], device=self.device
            )[0]
            return audio_tokens

        if is_contiguous:

            audio, sample_rate = torchaudio.load(audio_path)
            audio = audio.mean(0)
            if sample_rate != self.sample_rate:
                if sample_rate not in _resample_buffer:
                    _resample_buffer[sample_rate] = torchaudio.transforms.Resample(
                        orig_freq=sample_rate, new_freq=self.sample_rate
                    ).to(self.device)
                audio = audio.to(self.device)
                audio = _resample_buffer[sample_rate](audio[None, :])[0, :]
                audio = audio.cpu()
            # resampler = torchaudio.transforms.Resample(
            #     orig_freq=sample_rate, new_freq=self.sample_rate
            # )
            # audio = resampler(audio[None, :])[0, :]
            # audio = audio.to(self.device)

            frontend = self.kwargs["frontend"]

            speech, speech_lengths = extract_fbank(audio, data_type="sound", frontend=frontend)

            speech = speech[0]
            # print(f"{speech_lengths=}")
            # print(f"{speech.size()=}")

            return speech

    def decode(self, audio_tokens, option_steps=10, **kwargs):
        if not hasattr(self, "whisper_model"):
            self.load_model()

        this_uuid = str(uuid.uuid4())
        this_uuid = "abc"

        tts_token = torch.tensor(audio_tokens, device=self.device).unsqueeze(0)

        flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(self.device)
        prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)

        tts_speech, tts_mel = self.audio_decoder.token2wav(
            tts_token,
            uuid=this_uuid,
            prompt_token=flow_prompt_speech_token.to(self.device),
            prompt_feat=prompt_speech_feat.to(self.device),
            finalize=True,
            option_steps=option_steps,
        )
        tts_speechs = []
        tts_speechs.append(tts_speech.squeeze())
        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()

        return tts_speech

    def apply_to_role(self, role, **kwargs):
        is_discrete = kwargs.get("is_discrete", False)
        if is_discrete and role in ["assistant", "gpt"]:
            return True

        is_contiguous = kwargs.get("is_contiguous", False)
        if is_contiguous and role in ["user", "human"]:
            return True

        return False


_resample_buffer: dict[int, torchaudio.transforms.Resample] = {}


def extract_speech_token(model, feature_extractor, utts, device="cuda"):
    with torch.no_grad():
        audios, indices = [], []
        for idx, utt in enumerate(utts):
            if isinstance(utt, tuple):
                audio, sample_rate = utt
            else:
                audio, sample_rate = torchaudio.load(utt)
            audio = audio.to(device)
            if sample_rate != 16000:
                if sample_rate not in _resample_buffer:
                    _resample_buffer[sample_rate] = torchaudio.transforms.Resample(
                        orig_freq=sample_rate, new_freq=16000
                    ).to(device)
                audio = _resample_buffer[sample_rate](audio)
            # if audio.shape[0] > 1:
            #     audio = audio[:1]
            audio = audio[0]
            audio = audio.cpu().numpy()
            time_step = 0
            while time_step * 16000 < audio.shape[0]:
                audio_segment = audio[time_step * 16000 : (time_step + 30) * 16000]
                audios.append(audio_segment)
                indices.append(idx)
                time_step += 30
        pooling_kernel_size = model.config.pooling_kernel_size or 1
        stride = (
            model.conv1.stride[0]
            * model.conv2.stride[0]
            * pooling_kernel_size
            * feature_extractor.hop_length
        )
        all_speech_tokens = [[] for _ in range(len(utts))]
        batch_size = 128
        for start in range(0, len(audios), batch_size):
            features = feature_extractor(
                audios[start : start + batch_size],
                sampling_rate=16000,
                return_attention_mask=True,
                return_tensors="pt",
                device=device,
                padding="longest",
                pad_to_multiple_of=stride,
            )
            features = features.to(device=device)
            outputs = model(**features)
            speech_tokens = outputs.quantized_token_ids
            attention_mask = features.attention_mask[
                :, :: model.conv1.stride[0] * model.conv2.stride[0]
            ]
            attention_mask = attention_mask[:, :: model.config.pooling_kernel_size]
            assert attention_mask.shape == speech_tokens.shape
            for i in range(len(speech_tokens)):
                idx = indices[start + i]
                speech_token = speech_tokens[i][attention_mask[i].bool()].tolist()
                all_speech_tokens[idx].extend(speech_token)
        return all_speech_tokens