File size: 16,435 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import math
import os

import numpy as np
import torch
from PIL import Image

import decord
import natsort
from vita_audio.constants import (
    IMAGENET_DEFAULT_MEAN,
    IMAGENET_DEFAULT_STD,
    IMAGENET_STANDARD_MEAN,
    IMAGENET_STANDARD_STD,
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
)


class ImageProcessor:
    def __init__(
        self,
        process_type,
        image_size=448,
        normalize_type="imagenet",
        min_patch_grid=1,
        max_patch_grid=6,
    ):
        self.process_type = process_type
        self.image_size = image_size

        if normalize_type == "imagenet":
            MEAN, STD = IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
        elif normalize_type == "clip":
            MEAN, STD = OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
        elif normalize_type == "siglip":
            MEAN, STD = IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD
        else:
            raise NotImplementedError
        self.mean = MEAN
        self.std = STD

        self.patch_size = image_size
        self.min_patch_grid = min_patch_grid
        self.max_patch_grid = max_patch_grid

        if self.process_type == "anyres":
            self.grid_pinpoints = [
                (i, j)
                for i in range(min_patch_grid, max_patch_grid + 1)
                for j in range(min_patch_grid, max_patch_grid + 1)
            ]
            self.possible_resolutions = [
                [dim * self.patch_size for dim in pair] for pair in self.grid_pinpoints
            ]
            print(f"grid_pinpoints {self.grid_pinpoints}")
            print(f"possible_resolutions {self.possible_resolutions}")

        if self.process_type == "dynamic":
            max_num = self.max_patch_grid
            min_num = self.min_patch_grid
            # calculate the existing image aspect ratio
            target_ratios = set(
                (i, j)
                for n in range(min_num, max_num + 1)
                for i in range(1, n + 1)
                for j in range(1, n + 1)
                if i * j <= max_num and i * j >= min_num
            )
            self.target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
            self.possible_resolutions = [
                [dim * self.patch_size for dim in pair] for pair in self.target_ratios
            ]
            print(f"target_ratios {self.target_ratios}")
            print(f"possible_resolutions {self.possible_resolutions}")

    def get_frame_paths(self, frame_root, num_frames=8):
        os.makedirs(frame_root, exist_ok=True)

        self.frame_tmpl = "frame-{}-of-{}.jpg"
        return [
            os.path.join(frame_root, self.frame_tmpl.format(i, num_frames))
            for i in range(1, num_frames + 1)
        ]

    def save_video_frames(self, vid_path, max_fps=1, num_frames=8):

        vid = decord.VideoReader(vid_path, num_threads=1)

        step_size = len(vid) / (num_frames + 1)
        # step_size = max(1, step_size)
        fps = vid.get_avg_fps()
        step_size = max(fps / max_fps, step_size)

        # indices = [int(i * step_size) for i in range(1, num_frames + 1)]
        indices = [int(i * step_size) for i in range(0, num_frames)]
        indices = [i for i in indices if i < len(vid)]

        num_frames = len(indices)

        frame_paths = self.get_frame_paths(vid_path + ".saved_frames", num_frames)
        flag = np.all([os.path.exists(p) for p in frame_paths])
        if flag:
            return frame_paths

        images = [vid[i].asnumpy() for i in indices]
        images = [Image.fromarray(arr) for arr in images]

        for im, pth in zip(images, frame_paths):
            # if not os.path.exists(pth):
            #     im.save(pth)
            im.save(pth)
        # print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
        return frame_paths

    def get_video_frames(self, vid_path, max_fps=1, num_frames=8):

        vid = decord.VideoReader(vid_path, num_threads=1)

        step_size = len(vid) / (num_frames + 1)
        # step_size = max(1, step_size)
        fps = vid.get_avg_fps()
        step_size = max(fps / max_fps, step_size)

        # indices = [int(i * step_size) for i in range(1, num_frames + 1)]
        indices = [int(i * step_size) for i in range(0, num_frames)]
        indices = [i for i in indices if i < len(vid)]

        images = [vid[i].asnumpy() for i in indices]
        images = [Image.fromarray(arr) for arr in images]

        # print(f"save_video_frames vid_path {vid_path} fps {fps} len(vid) {len(vid)} frame_paths {frame_paths}")
        return images

    def process_video(self, video_file_or_dir, max_num_frame=8, max_fps=1):
        if os.path.isdir(video_file_or_dir):
            all_filepath = []
            for root, dirs, files in os.walk(video_file_or_dir):
                for filename in files:
                    if (
                        filename.endswith("png")
                        or filename.endswith("jpeg")
                        or filename.endswith("jpg")
                    ):
                        filepath = os.path.join(root, filename)
                        all_filepath.append(filepath)

            if len(all_filepath) == 0:
                return None

            # all_filepath.sort()
            all_filepath = natsort.natsorted(all_filepath)
            total_frame = len(all_filepath)
            if "ShareGPTVideo" in video_file_or_dir:
                fps = 2
            else:
                fps = 1
            target_frame = int(min(total_frame / fps * max_fps, max_num_frame))
            index = [int(1.0 * total_frame / target_frame) * x for x in range(target_frame)]

            selected_filepath = [all_filepath[x] for x in index]

            img_or_path_list = selected_filepath
            # print(f"process_video {img_or_path_list}")
        elif os.path.isfile(video_file_or_dir):
            # frame_paths = self.save_video_frames(
            #     video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
            # )
            # img_or_path_list = frame_paths
            img_or_path_list = self.get_video_frames(
                video_file_or_dir, num_frames=max_num_frame, max_fps=max_fps
            )
        else:
            # print(f"FileNotFoundError {video_file_or_dir}")
            raise NotImplementedError

        return self.process_images(img_or_path_list), img_or_path_list

    def process_images(self, img_or_path_list):

        if isinstance(img_or_path_list[0], str):
            images = [Image.open(x).convert("RGB") for x in img_or_path_list]
        elif isinstance(img_or_path_list[0], Image.Image):
            images = [x.convert("RGB") for x in img_or_path_list]
        else:
            images = img_or_path_list

        def expand2square(pil_img, background_color):
            width, height = pil_img.size
            if width == height:
                return pil_img
            elif width > height:
                result = Image.new(pil_img.mode, (width, width), background_color)
                result.paste(pil_img, (0, (width - height) // 2))
                return result
            else:
                result = Image.new(pil_img.mode, (height, height), background_color)
                result.paste(pil_img, ((height - width) // 2, 0))
                return result

        image_tensor = torch.ones([len(images), 3, self.image_size, self.image_size])

        for i, image in enumerate(images):
            image = expand2square(image, tuple(int(x * 255) for x in self.mean))

            image = image.resize(
                (self.image_size, self.image_size), resample=Image.Resampling.BICUBIC
            )

            image = np.array(image, dtype=np.float32)
            image = image * 1.0 / 255.0

            mean = np.array(self.mean, dtype=image.dtype)
            std = np.array(self.std, dtype=image.dtype)
            image = (image - mean) / std

            image = torch.tensor(image, dtype=torch.float32)
            image = image.permute(2, 0, 1)

            image_tensor[i] = image

        return image_tensor

    def process_images_with_subpatch(self, img_or_path):
        if self.process_type == "anyres":
            return self.process_anyres(img_or_path)
        if self.process_type == "dynamic":
            return self.process_dynamic(img_or_path)

        if isinstance(img_or_path, str):
            image = Image.open(img_or_path).convert("RGB")
        elif isinstance(img_or_path, Image.Image):
            image = img_or_path.convert("RGB")
        else:
            image = img_or_path

        return self.process_images([images])

    def process_anyres(self, img_or_path):
        if isinstance(img_or_path, str):
            image = Image.open(img_or_path).convert("RGB")
        elif isinstance(img_or_path, Image.Image):
            image = img_or_path.convert("RGB")
        else:
            image = img_or_path

        best_resolution = select_best_resolution(image.size, self.possible_resolutions)
        image_padded = resize_and_pad_image(image, best_resolution)
        patches = divide_to_patches(image_padded, self.patch_size)

        if best_resolution == (self.patch_size, self.patch_size):
            image_patches = [image]
        else:
            image_patches = [image] + patches

        image_patches = self.process_images(image_patches)

        # print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")

        return image_patches, best_resolution

    def process_dynamic(self, img_or_path):
        if isinstance(img_or_path, str):
            image = Image.open(img_or_path).convert("RGB")
        elif isinstance(img_or_path, Image.Image):
            image = img_or_path.convert("RGB")
        else:
            image = img_or_path

        image_patches, best_resolution = dynamic_preprocess(
            image,
            min_num=self.min_patch_grid,
            max_num=self.max_patch_grid,
            image_size=self.patch_size,
            use_thumbnail=True,
        )

        image_patches = self.process_images(image_patches)

        # print(f"image {image.size} best_resolution {best_resolution} image_padded {image_padded.size} patches {len(patches)} image_patches {image_patches.size()}")

        return image_patches, best_resolution


def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        # Calculate the downscaled size to keep the aspect ratio
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(
            original_height * scale
        )

        # Calculate effective and wasted resolutions
        effective_resolution = min(
            downscaled_width * downscaled_height, original_width * original_height
        )
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (
            effective_resolution == max_effective_resolution
            and wasted_resolution < min_wasted_resolution
        ):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    # Determine which dimension (width or height) to fill
    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        # Width will be filled completely
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        # Height will be filled completely
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    # Create a new image with the target size and paste the resized image onto it
    new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image


def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}')
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size
    )

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size,
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        # processed_images.append(thumbnail_img)
        processed_images = [
            thumbnail_img,
        ] + processed_images
    return processed_images, (target_width, target_height)