File size: 9,142 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
import math
import os

import torch

import natsort
from vita_audio.tokenizer import get_audio_tokenizer


class AudioProcessor:
    def __init__(
        self,
        audio_tokenizer_path=None,
        audio_tokenizer_type=None,
        text_audio_interval_ratio=None,
    ):

        self.audio_tokenizer = get_audio_tokenizer(
            audio_tokenizer_path,
            audio_tokenizer_type,
        )

        self.audio_tokenizer_type = audio_tokenizer_type

        self.text_audio_interval_ratio = text_audio_interval_ratio

        # self.load_model()

    def load_model(self):
        if self.audio_tokenizer is not None:
            self.audio_tokenizer.load_model()

    def process_audios(self, audio_path, is_discrete=False, is_contiguous=False, **kwargs):

        assert not (is_discrete and is_contiguous)
        assert is_discrete or is_contiguous

        if is_discrete:
            audio_tokenizer_type = self.audio_tokenizer_type.split("_")[-1]
            cache_path = os.path.splitext(audio_path)[0] + f"_{audio_tokenizer_type}.json"
            try:
                if os.path.isfile(cache_path):
                    with open(cache_path, "r") as f:
                        audio_data = json.load(f)
                    return audio_data
            except Exception as e:
                pass

        audio_data = self.audio_tokenizer.encode(
            audio_path, is_discrete=is_discrete, is_contiguous=is_contiguous, **kwargs
        )
        # print(f"{len(audio_data)=}")

        if is_discrete:
            try:
                if isinstance(audio_data, list):
                    with open(cache_path, "w") as f:
                        json.dump(audio_data, f)
            except Exception as e:
                pass

        return audio_data

    @property
    def is_discrete(self):
        return self.audio_tokenizer.is_discrete

    @property
    def is_contiguous(self):
        return self.audio_tokenizer.is_contiguous

    def apply_to_role(self, role, **kwargs):
        return self.audio_tokenizer.apply_to_role(role, **kwargs)

    def text_audio_interval(self, content_input_id, AUD_START_ID, AUD_END_ID):

        return text_audio_interval(
            content_input_id,
            AUD_START_ID,
            AUD_END_ID,
            self.text_audio_interval_ratio,
        )


def add_audio_input_contiguous(input_ids, audio_paths, tokenizer, audio_tokenizer):

    from ...constants import (
        AUD_START_TOKEN,
        AUD_END_TOKEN,
        AUD_TAG_TOKEN,
        AUD_CONTEXT_TOKEN,
    )

    AUD_CONTEXT_ID = tokenizer(AUD_CONTEXT_TOKEN, add_special_tokens=False).input_ids
    AUD_TAG_ID = tokenizer(AUD_TAG_TOKEN, add_special_tokens=False).input_ids
    AUD_START_ID = tokenizer(AUD_START_TOKEN, add_special_tokens=False).input_ids
    AUD_END_ID = tokenizer(AUD_END_TOKEN, add_special_tokens=False).input_ids

    AUD_CONTEXT_ID = AUD_CONTEXT_ID[0]
    AUD_TAG_ID = AUD_TAG_ID[0]
    AUD_START_ID = AUD_START_ID[0]
    AUD_END_ID = AUD_END_ID[0]

    aud_positions = [i for i, x in enumerate(input_ids) if x == AUD_TAG_ID]

    audios = []
    audio_indices = []
    new_input_ids = []
    st = 0
    for aud_idx, aud_pos in enumerate(aud_positions):
        audio = audio_tokenizer.encode(audio_paths[aud_idx], is_contiguous=True)
        audios.append(audio)
        audio_token_length = audio.size(0) + 4

        new_input_ids += input_ids[st:aud_pos]

        new_input_ids += [AUD_START_ID]

        audio_indice_b = torch.zeros(
            1, audio_token_length, dtype=torch.int64
        )  # This will change in collate_fn
        audio_indice_s = (
            torch.arange(len(new_input_ids), len(new_input_ids) + audio_token_length)
            .unsqueeze(0)
            .repeat(1, 1)
        )
        audio_indice_b_s = torch.stack(
            [audio_indice_b, audio_indice_s], dim=0
        )  # 2, num_image, image_length
        audio_indices.append(audio_indice_b_s)

        new_input_ids += [AUD_CONTEXT_ID] * audio_token_length

        new_input_ids += [AUD_END_ID]

        st = aud_pos + 1

    new_input_ids += input_ids[st:]
    inputs_ids = new_input_ids

    return inputs_ids, audios, audio_indices


def text_audio_interval_old(input_ids, AUD_START_ID, AUD_END_ID, text_audio_interval_ratio):

    if text_audio_interval_ratio is not None:
        text_num, audio_num = text_audio_interval_ratio

    else:
        text_num = 13
        audio_num = 26
        text_num = 4
        audio_num = 10

    # exclude AUD_START and AUD_END
    audio_num = audio_num - 2

    st = [i for i, x in enumerate(input_ids) if x == AUD_START_ID]
    ed = [i for i, x in enumerate(input_ids) if x == AUD_END_ID]

    # only text
    if len(st) == 0 and len(ed) == 0:
        return input_ids

    assert len(st) == 1
    assert len(ed) == 1

    st = st[0]
    ed = ed[0]

    assert st < ed

    # only audio
    if st == 0 and ed == len(input_ids) - 1:
        return input_ids

    audio_tokens = input_ids[st + 1 : ed]
    text_tokens = input_ids[:st] + input_ids[ed + 1 :]

    if False:
        audio_tokens_chunks = [
            audio_tokens[i : i + audio_num] for i in range(0, len(audio_tokens), audio_num)
        ]
        text_tokens_chunks = [
            text_tokens[i : i + text_num] for i in range(0, len(text_tokens), text_num)
        ]

    if False:
        # [0 1] [2 3 4 5 6 audio_num-1] ...
        audio_tokens_chunks = [audio_tokens[:2], audio_tokens[2:audio_num]] + [
            audio_tokens[i : i + audio_num] for i in range(audio_num, len(audio_tokens), audio_num)
        ]
        # [0] [1 2 text_num-1] ...
        text_tokens_chunks = [text_tokens[:1], text_tokens[1:text_num]] + [
            text_tokens[i : i + text_num] for i in range(text_num, len(text_tokens), text_num)
        ]

    if True:
        # [0 1 2 3 4 5 6 audio_num] [] ...
        audio_tokens_chunks = [audio_tokens[:audio_num]] + [
            audio_tokens[i : i + audio_num] for i in range(audio_num, len(audio_tokens), audio_num)
        ]
        # [0] [] ...
        text_tokens_chunks = [text_tokens[:1]] + [
            text_tokens[i : i + text_num] for i in range(1, len(text_tokens), text_num)
        ]

    chunk_num = min(len(audio_tokens_chunks), len(text_tokens_chunks))
    audio_tokens_chunks = audio_tokens_chunks[: chunk_num - 1] + [
        sum(audio_tokens_chunks[chunk_num - 1 :], [])
    ]
    text_tokens_chunks = text_tokens_chunks[: chunk_num - 1] + [
        sum(text_tokens_chunks[chunk_num - 1 :], [])
    ]

    interval_input_ids = []
    for text_tokens, audio_tokens in zip(text_tokens_chunks, audio_tokens_chunks):
        interval_input_ids += text_tokens + [AUD_START_ID] + audio_tokens + [AUD_END_ID]
        # interval_input_ids += text_tokens + audio_tokens

    return interval_input_ids


def text_audio_interval(input_ids, AUD_START_ID, AUD_END_ID, text_audio_interval_ratio):

    if text_audio_interval_ratio is None:
        #                            T   A
        text_audio_interval_ratio = [13, 26]
        #                            T  A  T  A  T  A
        text_audio_interval_ratio = [1, 4, 3, 8, 4, 10]
        #                            T  A   T  A
        text_audio_interval_ratio = [1, 10, 4, 10]

    text_nums = text_audio_interval_ratio[::2]
    audio_nums = text_audio_interval_ratio[1::2]

    # exclude AUD_START and AUD_END
    audio_nums = [x - 2 for x in audio_nums]

    st = [i for i, x in enumerate(input_ids) if x == AUD_START_ID]
    ed = [i for i, x in enumerate(input_ids) if x == AUD_END_ID]

    # only text
    if len(st) == 0 and len(ed) == 0:
        return input_ids

    assert len(st) == 1
    assert len(ed) == 1

    st = st[0]
    ed = ed[0]

    assert st < ed

    # only audio
    if st == 0 and ed == len(input_ids) - 1:
        return input_ids

    audio_tokens = input_ids[st + 1 : ed]
    text_tokens = input_ids[:st] + input_ids[ed + 1 :]

    audio_tokens_chunks = []
    while len(audio_tokens) > 0:
        if len(audio_nums) > 1:
            audio_num = audio_nums.pop(0)
        else:
            audio_num = audio_nums[0]

        audio_tokens_chunks.append(audio_tokens[:audio_num])
        audio_tokens = audio_tokens[audio_num:]

    text_tokens_chunks = []
    while len(text_tokens) > 0:
        if len(text_nums) > 1:
            text_num = text_nums.pop(0)
        else:
            text_num = text_nums[0]

        text_tokens_chunks.append(text_tokens[:text_num])
        text_tokens = text_tokens[text_num:]

    chunk_num = min(len(audio_tokens_chunks), len(text_tokens_chunks))
    audio_tokens_chunks = audio_tokens_chunks[: chunk_num - 1] + [
        sum(audio_tokens_chunks[chunk_num - 1 :], [])
    ]
    text_tokens_chunks = text_tokens_chunks[: chunk_num - 1] + [
        sum(text_tokens_chunks[chunk_num - 1 :], [])
    ]

    interval_input_ids = []
    for text_tokens, audio_tokens in zip(text_tokens_chunks, audio_tokens_chunks):
        interval_input_ids += text_tokens + [AUD_START_ID] + audio_tokens + [AUD_END_ID]
        # interval_input_ids += text_tokens + audio_tokens

    return interval_input_ids