File size: 29,673 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import json
import logging
import math
import os
import pdb
import random
import re
import sys
import time
import traceback
from collections import defaultdict
from typing import Dict, List, Optional, Sequence

import numpy as np
import torch
import transformers
from transformers.trainer_pt_utils import LabelSmoother

from .dataset_base import BaseDataset

IGNORE_TOKEN_ID = LabelSmoother.ignore_index


class Qwen2Dataset(BaseDataset):
    def __init__(
        self,
        *args,
        **kwargs,
    ):
        super().__init__(
            *args,
            **kwargs,
        )

        self.default_system_message = "You are a helpful AI assistant."
        self.default_system_message = None

        self.ret = defaultdict(dict)
        self.is_cat = True

        if self.cross_dataset_joint:
            for i in range(2):
                self.maybe_init_ret(f"default_{i}")

    def maybe_init_ret(self, source, force=False):
        if source not in self.ret or force:
            self.ret[source] = {}

            self.ret[source]["tokens"] = []
            self.ret[source]["labels"] = []
            self.ret[source]["actual_seq_len"] = []

            if self.create_position_ids:
                self.ret[source]["position_ids"] = []

            if self.create_attention_mask:
                self.ret[source]["attention_mask"] = []

            if self.create_attention_mask_2d:
                self.ret[source]["attention_mask_2d"] = torch.tril(
                    torch.ones(
                        (1, self.max_padding_length, self.max_padding_length), dtype=torch.bool
                    )
                )
        return len(self.ret[source]["tokens"]) == 0

    def get_max_min_ret_length(self):
        max_ret_lengh = 0
        min_ret_lengh = self.max_padding_length + 1

        max_ret_key = None
        min_ret_key = None

        for k, v in self.ret.items():
            cur_length = len(v["tokens"])

            if cur_length > max_ret_lengh:
                max_ret_lengh = cur_length
                max_ret_key = k

            if cur_length < min_ret_lengh:
                min_ret_lengh = cur_length
                min_ret_key = k

        return max_ret_lengh, max_ret_key, min_ret_lengh, min_ret_key

    def add_ret(self, ret, source):
        cur_length = len(ret["input_ids"])
        cur_image_length = len(ret["images"])
        cur_audio_length = len(ret["audios"])

        all_length = len(self.ret[source]["tokens"])

        if "images" in self.ret[source]:
            all_image_length = len(self.ret[source]["images"])
        else:
            all_image_length = 0

        if cur_image_length > 0:
            if all_image_length > 0:
                self.ret[source]["images"] = torch.cat(
                    [self.ret[source]["images"], ret["images"]], dim=0
                )
                ret["image_indices"][1, :, :] += all_length
                self.ret[source]["image_indices"] = torch.cat(
                    [self.ret[source]["image_indices"], ret["image_indices"]], dim=1
                )
            else:
                self.ret[source]["images"] = ret["images"]
                self.ret[source]["image_indices"] = ret["image_indices"]

        if "audios" in self.ret[source]:
            all_audio_length = len(self.ret[source]["audios"])
        else:
            all_audio_length = 0

        if cur_audio_length > 0:
            if all_audio_length > 0:
                # self.ret[source]["audios"] = torch.cat(
                #     [self.ret[source]["audios"], ret["audios"]], dim=0
                # )
                # ret["audio_indices"][1, :, :] += all_length
                # self.ret[source]["audio_indices"] = torch.cat(
                #     [self.ret[source]["audio_indices"], ret["audio_indices"]], dim=1
                # )
                self.ret[source]["audios"].extend(ret["audios"])
                for audio_indice in ret["audio_indices"]:
                    audio_indice[1, :, :] += all_length
                self.ret[source]["audio_indices"].extend(ret["audio_indices"])
            else:
                self.ret[source]["audios"] = ret["audios"]
                self.ret[source]["audio_indices"] = ret["audio_indices"]

            # print(self.ret[source]["audios"])

        if self.create_attention_mask:
            self.ret[source]["attention_mask"] += ret["attention_mask"]

        if self.create_attention_mask_2d:
            self.ret[source]["attention_mask_2d"][:, all_length:, :all_length] = 0

        if self.create_position_ids:
            self.ret[source]["position_ids"] += list(range(cur_length))

        self.ret[source]["tokens"] += ret["input_ids"]
        self.ret[source]["labels"] += ret["labels"]
        self.ret[source]["actual_seq_len"] += [all_length + cur_length]

    def process_ret(self, to_ret):
        if "tokens" in to_ret and len(to_ret["tokens"]) > 0:
            pass
        else:
            return to_ret

        if self.create_position_ids:
            if self.reset_position_ids:
                pass
            else:
                to_ret["position_ids"] = list(range(len(to_ret["tokens"])))

        if self.create_attention_mask_2d:
            if self.reset_attention_mask:
                pass
            else:
                to_ret["attention_mask_2d"] = torch.tril(
                    torch.ones(
                        (1, self.max_padding_length, self.max_padding_length), dtype=torch.bool
                    )
                )

        if self.shift_token:
            to_ret["tokens"] = to_ret["tokens"][:-1]
            to_ret["labels"] = to_ret["labels"][1:]
            to_ret["actual_seq_len"][-1] -= 1
            if self.create_position_ids:
                to_ret["position_ids"] = to_ret["position_ids"][:-1]
            if self.create_attention_mask:
                to_ret["attention_mask"] = to_ret["attention_mask"][:-1]

            if self.create_attention_mask_2d:
                to_ret["attention_mask_2d"][:, :, -1] = 0
                to_ret["attention_mask_2d"][:, -1, :] = 0

        assert len(to_ret["tokens"]) == len(
            to_ret["labels"]
        ), f"{len(to_ret['tokens'])} {len(to_ret['labels'])}"
        if not self.variable_length and self.max_padding_length > len(to_ret["tokens"]):
            to_ret["tokens"] += [self.tokenizer.pad_token_id] * (
                self.max_padding_length - len(to_ret["tokens"])
            )
            to_ret["labels"] += [IGNORE_TOKEN_ID] * (
                self.max_padding_length - len(to_ret["labels"])
            )
            to_ret["actual_seq_len"][-1] = self.max_padding_length
            if self.create_position_ids:
                # to_ret["position_ids"] += to_ret["position_ids"][-1:] * (
                #     self.max_padding_length - len(to_ret["position_ids"])
                # )
                to_ret["position_ids"] += list(
                    range(to_ret["position_ids"][-1] + 1, self.max_padding_length)
                )
            if self.create_attention_mask:
                to_ret["attention_mask"] += [0] * (
                    self.max_padding_length - len(to_ret["attention_mask"])
                )

        to_ret["tokens"] = to_ret["tokens"][: self.max_padding_length]
        to_ret["labels"] = to_ret["labels"][: self.max_padding_length]
        to_ret["actual_seq_len"][-1] = self.max_padding_length
        if self.create_position_ids:
            to_ret["position_ids"] = to_ret["position_ids"][: self.max_padding_length]
        if self.create_attention_mask:
            to_ret["attention_mask"] = to_ret["attention_mask"][: self.max_padding_length]

        to_ret["tokens"] = torch.tensor(to_ret["tokens"], dtype=torch.int64)
        to_ret["labels"] = torch.tensor(to_ret["labels"], dtype=torch.int64)
        to_ret["actual_seq_len"] = torch.tensor(to_ret["actual_seq_len"], dtype=torch.int64)
        if self.create_position_ids:
            to_ret["position_ids"] = torch.tensor(to_ret["position_ids"], dtype=torch.int64)
        if self.create_attention_mask:
            to_ret["attention_mask"] = torch.tensor(to_ret["attention_mask"], dtype=torch.int64)

        if self.create_attention_mask_2d:
            attention_mask_2d = to_ret.pop("attention_mask_2d")
            attention_mask_2d = attention_mask_2d.masked_fill(
                (to_ret["attention_mask"] < 0.5).view(1, 1, self.max_padding_length), value=0
            )
            attention_mask_2d = attention_mask_2d < 0.5

            to_ret["attention_mask"] = attention_mask_2d

        if self.create_loss_mask:
            loss_mask = torch.where(to_ret["labels"] == IGNORE_TOKEN_ID, 0, 1)
            to_ret["loss_mask"] = loss_mask.to(torch.float32)

        if not self.reset_position_ids and not self.reset_attention_mask:
            to_ret.pop("actual_seq_len")

        to_ret["input_ids"] = to_ret["tokens"]

        # print("to_ret[tokens]", to_ret["tokens"])
        # print("to_ret[labels]", to_ret["labels"])

        return to_ret

    def is_skip(self):
        if self.processed_samples < self.skip_samples:
            if self.processed_samples % 1e3 == 0:
                print(
                    f"processed_samples {self.processed_samples} skip_samples {self.skip_samples}"
                )
            return True

    def show_statistic(self):
        log_interval = 10000
        if self.max_padding_length >= 2**17:
            log_interval = 500
        if self.max_padding_length >= 2**20:
            log_interval = 100

        if self.unjoint_samples % log_interval == 0:
            print(
                f"processed_samples {self.processed_samples} unjoint_samples {self.unjoint_samples} joint_samples {self.joint_samples} {[len(v['tokens']) for _, v in self.ret.items()]}",
                flush=True,
            )

        return False

    def __getitem__(self, index):

        self.processor["audio"].load_model()

        while True:
            # if True:
            try:
                self.processed_samples += 1
                if self.is_skip():
                    return {}

                sample = self.raw_data[index]

                if self.cross_dataset_joint:
                    is_empty = False
                    (
                        max_ret_lengh,
                        max_ret_key,
                        min_ret_lengh,
                        min_ret_key,
                    ) = self.get_max_min_ret_length()
                else:
                    source = sample["source"]
                    is_empty = self.maybe_init_ret(source)

                    max_ret_lengh = min_ret_lengh = len(self.ret[source]["tokens"])
                    max_ret_key = min_ret_key = source

                is_begin = is_empty or self.reset_position_ids or self.reset_attention_mask

                ret = preprocess(
                    sample,
                    self.tokenizer,
                    self.image_token_length,
                    default_system_message=self.default_system_message,
                    processor=self.processor,
                    is_begin=is_begin,
                    max_num_frame=self.max_num_frame,
                    max_fps=self.max_fps,
                )

                if ret is None:
                    return {}

                cur_length = len(ret["input_ids"])

                if cur_length > self.max_padding_length:
                    return {}

                self.unjoint_samples += 1

                if not self.dataset_joint:
                    to_ret = self.ret.pop(max_ret_key)

                    self.maybe_init_ret(max_ret_key, force=True)
                    self.add_ret(ret, max_ret_key)

                elif min_ret_lengh + cur_length > self.max_padding_length:
                    to_ret = self.ret.pop(max_ret_key)
                    self.joint_samples += 1

                    self.maybe_init_ret(max_ret_key, force=True)
                    self.add_ret(ret, max_ret_key)

                else:
                    to_ret = {}
                    self.add_ret(ret, min_ret_key)

                to_ret = self.process_ret(to_ret)

                self.show_statistic()
                return to_ret

            except Exception as error:
                try:
                    with open(os.path.join(self.output_dir, "data_error.log"), "a") as f:
                        print("-" * 100, file=f)
                        print(traceback.format_exc(), file=f)
                        print(self.raw_data[index], file=f)
                except Exception as error:
                    print(error)
                return {}


def preprocess(
    sample,
    tokenizer: transformers.PreTrainedTokenizer,
    image_token_length: int,
    default_system_message: str = "You are a helpful assistant.",
    processor=None,
    is_begin: bool = True,
    max_num_frame: int = 8,
    max_fps: int = 1,
) -> Dict:

    # <|im_start|>system
    # You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>
    # <|im_start|>user
    # Hello, how are you?<|im_end|>
    # <|im_start|>assistantI'm doing great. How can I help you today?<|im_end|>
    # <|im_start|>user
    # I'd like to show off how chat templating works!<|im_end|>

    from ..constants import (
        IMG_START_TOKEN,
        IMG_END_TOKEN,
        IMG_CONTEXT_TOKEN,
        VID_START_TOKEN,
        VID_END_TOKEN,
        VID_CONTEXT_TOKEN,
        PATCH_START_TOKEN,
        PATCH_END_TOKEN,
        PATCH_CONTEXT_TOKEN,
        AUD_START_TOKEN,
        AUD_END_TOKEN,
        IMG_TAG_TOKEN,
        VID_TAG_TOKEN,
        AUD_TAG_TOKEN,
        AUD_CONTEXT_TOKEN,
    )

    human_roles = ["user", "human"]
    gpt_roles = ["assistant", "gpt"]
    system_roles = ["system"]

    IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids
    IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids
    IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids

    VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids
    VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids
    VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids

    PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids
    PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids
    PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids

    AUD_CONTEXT_ID = tokenizer(AUD_CONTEXT_TOKEN, add_special_tokens=False).input_ids
    AUD_START_ID = tokenizer(AUD_START_TOKEN, add_special_tokens=False).input_ids
    AUD_END_ID = tokenizer(AUD_END_TOKEN, add_special_tokens=False).input_ids

    IMG_TAG_ID = tokenizer(IMG_TAG_TOKEN, add_special_tokens=False).input_ids
    VID_TAG_ID = tokenizer(VID_TAG_TOKEN, add_special_tokens=False).input_ids
    AUD_TAG_ID = tokenizer(AUD_TAG_TOKEN, add_special_tokens=False).input_ids

    assert len(IMG_CONTEXT_ID) == 1
    assert len(IMG_START_ID) == 1
    assert len(IMG_END_ID) == 1

    assert len(VID_CONTEXT_ID) == 1
    assert len(VID_START_ID) == 1
    assert len(VID_END_ID) == 1

    assert len(PATCH_CONTEXT_ID) == 1
    assert len(PATCH_START_ID) == 1
    assert len(PATCH_END_ID) == 1

    IMG_CONTEXT_ID = IMG_CONTEXT_ID[0]
    IMG_START_ID = IMG_START_ID[0]
    IMG_END_ID = IMG_END_ID[0]

    VID_CONTEXT_ID = VID_CONTEXT_ID[0]
    VID_START_ID = VID_START_ID[0]
    VID_END_ID = VID_END_ID[0]

    PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0]
    PATCH_START_ID = PATCH_START_ID[0]
    PATCH_END_ID = PATCH_END_ID[0]

    AUD_CONTEXT_ID = AUD_CONTEXT_ID[0]
    AUD_START_ID = AUD_START_ID[0]
    AUD_END_ID = AUD_END_ID[0]

    IMG_TAG_ID = IMG_TAG_ID[0]
    VID_TAG_ID = VID_TAG_ID[0]
    AUD_TAG_ID = AUD_TAG_ID[0]

    BOS_ID = tokenizer.bos_token_id
    EOS_ID = tokenizer.eos_token_id

    IM_START = "<|im_start|>"
    IM_END = "<|im_end|>"
    USER = "user"
    ASSISTANT = "assistant"
    SYSTEM = "system"

    nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids
    IM_START_IDS = tokenizer(IM_START, add_special_tokens=False).input_ids
    IM_END_IDS = tokenizer(IM_END, add_special_tokens=False).input_ids
    USER_IDS = tokenizer(USER, add_special_tokens=False).input_ids
    ASSISTANT_IDS = tokenizer(ASSISTANT, add_special_tokens=False).input_ids
    SYSTEM_IDS = tokenizer(SYSTEM, add_special_tokens=False).input_ids

    input_ids, targets = [], []
    images = []
    image_indices = []
    audios = []
    audio_indices = []

    messages = []
    if "conversations" in sample:
        messages = sample["conversations"]
    if len(messages) == 0 and "messages" in sample:
        messages = sample["messages"]

    # ----------------------------------------------------------------
    # add text to TTS
    if True:
        add_text = None
        # add_audio = None
        for j, sentence in enumerate(messages):
            content = sentence["content"]
            role = sentence["role"]
            if role == "user":
                if "Convert the text to speech." in content:
                    add_text = content.replace("Convert the text to speech.\n", "")
                    add_text = add_text.strip()

                # if "Convert the speech to text." in content:
                #     add_audio = sample["audios"][-1]

            if role == "assistant" and add_text is not None:
                sentence["content"] = add_text + content

            # if role == "assistant" and add_audio is not None:
            #     sentence["content"] = content + "\n<audio>"
            #     sample["audios"].append(add_audio)

    # ----------------------------------------------------------------
    # system
    has_system = False
    if is_begin:
        if messages[0]["role"] == "system":
            has_system = True
        else:
            has_system = False

        if (
            not has_system
            and default_system_message is not None
            and len(default_system_message) > 0
        ):
            messages = [{"role": "system", "content": default_system_message}] + messages
            has_system = True

    # ----------------------------------------------------------------
    # audio
    if has_audio(sample) and processor["audio"].is_discrete:
        unused_audio_idxs = list(range(len(sample["audios"])))
        audio_tokens_list = [
            processor["audio"].process_audios(x, is_discrete=True) for x in sample["audios"]
        ]
        audio_tokens_list = ["".join(f"<|audio_{i}|>" for i in x) for x in audio_tokens_list]

        audio_idx = 0
        for j, sentence in enumerate(messages):
            content = sentence["content"]
            role = sentence["role"]
            # whether apply discrete tokenize to this role
            if processor["audio"].apply_to_role(role, is_discrete=True):
                while AUD_TAG_TOKEN in content:
                    content = content.replace(
                        AUD_TAG_TOKEN,
                        f"{AUD_START_TOKEN}{audio_tokens_list[audio_idx]}{AUD_END_TOKEN}",
                        1,
                    )
                    unused_audio_idxs.remove(audio_idx)
                    audio_idx += 1
            else:
                audio_idx += content.count(AUD_TAG_TOKEN)

            sentence["content"] = content

    # ----------------------------------------------------------------
    # text
    for j, sentence in enumerate(messages):
        role = sentence["role"]
        content = sentence["content"]

        if role in human_roles:
            _input_id = (
                IM_START_IDS
                + USER_IDS
                + nl_tokens
                + tokenizer(content, add_special_tokens=False).input_ids
                + IM_END_IDS
                + nl_tokens
            )
            _target = [IGNORE_TOKEN_ID] * len(_input_id)

        elif role in gpt_roles:
            content_input_id = tokenizer(content, add_special_tokens=False).input_ids
            if processor["audio"].audio_tokenizer is not None:
                content_input_id = processor["audio"].text_audio_interval(
                    content_input_id,
                    AUD_START_ID,
                    AUD_END_ID,
                )

            _input_id = (
                IM_START_IDS + ASSISTANT_IDS + nl_tokens + content_input_id + IM_END_IDS + nl_tokens
            )
            _target = (
                [IGNORE_TOKEN_ID] * len(IM_START_IDS)
                + [IGNORE_TOKEN_ID] * len(ASSISTANT_IDS)
                + [IGNORE_TOKEN_ID] * len(nl_tokens)
                + content_input_id
                + IM_END_IDS
                + nl_tokens
            )

        elif role in system_roles:
            _input_id = (
                IM_START_IDS
                + SYSTEM_IDS
                + nl_tokens
                + tokenizer(content, add_special_tokens=False).input_ids
                + IM_END_IDS
                + nl_tokens
            )
            _target = [IGNORE_TOKEN_ID] * len(_input_id)

        else:
            raise NotImplementedError

        # print(f"_input_id {_input_id}")
        input_ids += _input_id
        targets += _target

    # ----------------------------------------------------------------
    # image
    if has_image(sample):
        img_positions = [i for i, x in enumerate(input_ids) if x == IMG_TAG_ID]
        assert len(img_positions) == len(sample["images"]), sample

        new_input_ids = []
        new_targets = []
        st = 0
        for img_idx, img_pos in enumerate(img_positions):
            image_patches, (best_width, best_height) = processor[
                "image"
            ].process_images_with_subpatch(sample["images"][img_idx])
            images.append(image_patches)

            new_input_ids += input_ids[st:img_pos]
            new_targets += targets[st:img_pos]

            new_input_ids += [IMG_START_ID]
            new_targets += [IGNORE_TOKEN_ID]

            image_indice_b = torch.zeros(
                1, image_token_length, dtype=torch.int64
            )  # This will change in collate_fn
            image_indice_s = (
                torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
                .unsqueeze(0)
                .repeat(1, 1)
            )
            image_indice_b_s = torch.stack(
                [image_indice_b, image_indice_s], dim=0
            )  # 2, num_image, image_length
            image_indices.append(image_indice_b_s)

            new_input_ids += [IMG_CONTEXT_ID] * image_token_length
            new_targets += [IGNORE_TOKEN_ID] * image_token_length

            new_input_ids += [IMG_END_ID]
            new_targets += [IGNORE_TOKEN_ID]

            if len(image_patches) > 1:
                for i in range(0, best_height, processor["image"].patch_size):
                    new_input_ids += nl_tokens
                    new_targets += [IGNORE_TOKEN_ID] * len(nl_tokens)

                    for j in range(0, best_width, processor["image"].patch_size):
                        new_input_ids += [PATCH_START_ID]
                        new_targets += [IGNORE_TOKEN_ID]

                        image_indice_b = torch.zeros(
                            1, image_token_length, dtype=torch.int64
                        )  # This will change in collate_fn
                        image_indice_s = (
                            torch.arange(
                                len(new_input_ids), len(new_input_ids) + image_token_length
                            )
                            .unsqueeze(0)
                            .repeat(1, 1)
                        )
                        image_indice_b_s = torch.stack(
                            [image_indice_b, image_indice_s], dim=0
                        )  # 2, num_image, image_length
                        image_indices.append(image_indice_b_s)

                        new_input_ids += [PATCH_CONTEXT_ID] * image_token_length
                        new_targets += [IGNORE_TOKEN_ID] * image_token_length

                        new_input_ids += [PATCH_END_ID]
                        new_targets += [IGNORE_TOKEN_ID]

            st = img_pos + 1

        new_input_ids += input_ids[st:]
        new_targets += targets[st:]

        input_ids = new_input_ids
        targets = new_targets

    # ----------------------------------------------------------------
    # video
    if has_video(sample):
        vid_positions = [i for i, x in enumerate(input_ids) if x == VID_TAG_ID]
        assert len(vid_positions) == len(sample["videos"]), sample

        new_input_ids = []
        new_targets = []
        st = 0
        for vid_idx, vid_pos in enumerate(vid_positions):
            video_frames, _ = processor["image"].process_video(
                sample["videos"][vid_idx], max_num_frame, max_fps
            )

            new_input_ids += input_ids[st:vid_pos]
            new_targets += targets[st:vid_pos]

            images.append(video_frames)

            for _ in video_frames:
                new_input_ids += [VID_START_ID]
                new_targets += [IGNORE_TOKEN_ID]

                image_indice_b = torch.zeros(
                    1, image_token_length, dtype=torch.int64
                )  # This will change in collate_fn
                image_indice_s = (
                    torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
                    .unsqueeze(0)
                    .repeat(1, 1)
                )
                image_indice_b_s = torch.stack(
                    [image_indice_b, image_indice_s], dim=0
                )  # 2, num_image, image_length
                image_indices.append(image_indice_b_s)

                new_input_ids += [VID_CONTEXT_ID] * image_token_length
                new_targets += [IGNORE_TOKEN_ID] * image_token_length

                new_input_ids += [VID_END_ID]
                new_targets += [IGNORE_TOKEN_ID]

            st = vid_pos + 1

        new_input_ids += input_ids[st:]
        new_targets += targets[st:]

        input_ids = new_input_ids
        targets = new_targets

    # ----------------------------------------------------------------
    # audio
    if has_audio(sample) and processor["audio"].is_contiguous:
        aud_positions = [i for i, x in enumerate(input_ids) if x == AUD_TAG_ID]
        # assert len(aud_positions) == len(sample["audios"]), sample
        assert len(aud_positions) == len(unused_audio_idxs), sample

        new_input_ids = []
        new_targets = []
        st = 0
        for aud_idx, aud_pos in enumerate(aud_positions):
            aud_idx = unused_audio_idxs[aud_idx]
            audio = processor["audio"].process_audios(sample["audios"][aud_idx], is_contiguous=True)
            audios.append(audio)
            audio_token_length = audio.size(0) + 4
            # audio_token_length = audio.size(0)

            new_input_ids += input_ids[st:aud_pos]
            new_targets += targets[st:aud_pos]

            new_input_ids += [AUD_START_ID]
            new_targets += [IGNORE_TOKEN_ID]

            audio_indice_b = torch.zeros(
                1, audio_token_length, dtype=torch.int64
            )  # This will change in collate_fn
            audio_indice_s = (
                torch.arange(len(new_input_ids), len(new_input_ids) + audio_token_length)
                .unsqueeze(0)
                .repeat(1, 1)
            )
            audio_indice_b_s = torch.stack(
                [audio_indice_b, audio_indice_s], dim=0
            )  # 2, num_image, image_length
            audio_indices.append(audio_indice_b_s)

            new_input_ids += [AUD_CONTEXT_ID] * audio_token_length
            new_targets += [IGNORE_TOKEN_ID] * audio_token_length

            new_input_ids += [AUD_END_ID]
            new_targets += [IGNORE_TOKEN_ID]

            st = aud_pos + 1

        new_input_ids += input_ids[st:]
        new_targets += targets[st:]

        input_ids = new_input_ids
        targets = new_targets

    if len(images) > 0:
        images = torch.cat(images, dim=0)

    if len(image_indices) > 0:
        image_indices = torch.cat(image_indices, dim=1)

    # if len(audios) > 0:
    #     audios = torch.cat(audios, dim=0)

    # if len(audio_indices) > 0:
    #     audio_indices = torch.cat(audio_indices, dim=1)

    attention_mask = [1] * len(input_ids)

    # print("sample", sample, flush=True)
    # print("input_ids", input_ids, flush=True)
    # print("targets", targets[:100], flush=True)
    # print("images", [xx.shape for x in images for xx in x], flush=True)

    return dict(
        input_ids=input_ids,
        labels=targets,
        attention_mask=attention_mask,
        images=images,
        image_indices=image_indices,
        audios=audios,
        audio_indices=audio_indices,
    )


def has_video(sample):
    # video
    if (
        "videos" in sample
        and isinstance(sample["videos"], list)
        and None not in sample["videos"]
        and len(sample["videos"])
    ):
        return True
    return False


def has_image(sample):
    # image
    if (
        "images" in sample
        and isinstance(sample["images"], list)
        and None not in sample["images"]
        and len(sample["images"])
    ):
        return True
    return False


def has_audio(sample):
    # audio
    if (
        "audios" in sample
        and isinstance(sample["audios"], list)
        and None not in sample["audios"]
        and len(sample["audios"])
    ):
        return True
    return False