Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,255 Bytes
52e4f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
import copy
import json
import logging
import os
import pdb
import re
import time
import traceback
from collections import defaultdict
from typing import Dict, List, Optional, Sequence
import numpy as np
import torch
import transformers
from transformers.trainer_pt_utils import LabelSmoother
from .dataset_base import BaseDataset
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
class MistralDataset(BaseDataset):
def __init__(
self,
*args,
**kwargs,
):
super().__init__(
*args,
**kwargs,
)
self.system_message = "You are a helpful AI assistant."
self.system_message = None
self.ret = defaultdict(dict)
self.is_cat = True
def maybe_init_ret(self, source, force=False):
if source not in self.ret or force:
self.ret[source] = {}
self.ret[source]["tokens"] = []
self.ret[source]["labels"] = []
self.ret[source]["actual_seq_len"] = []
if self.create_position_ids:
self.ret[source]["position_ids"] = []
if self.create_attention_mask:
self.ret[source]["attention_mask"] = []
if self.create_attention_mask_2d:
self.ret[source]["attention_mask_2d"] = torch.tril(
torch.ones(
(1, self.max_padding_length, self.max_padding_length), dtype=torch.bool
)
)
return len(self.ret[source]["tokens"]) == 0
def __getitem__(self, index):
while True:
try:
# if True:
self.processed_samples += 1
if self.processed_samples < self.skip_samples:
if self.processed_samples % 1e3 == 0:
print(
f"processed_samples {self.processed_samples} skip_samples {self.skip_samples}"
)
return {}
source = self.raw_data[index]["source"]
is_empty = self.maybe_init_ret(source)
is_begin = is_empty or self.reset_position_ids or self.reset_attention_mask
ret = preprocess(
self.raw_data[index],
self.tokenizer,
self.image_token_length,
system_message=self.system_message,
image_processor=self.processor["image"],
is_begin=is_begin,
max_num_frame=self.max_num_frame,
max_fps=self.max_fps,
)
if ret is None:
return {}
if len(ret["input_ids"]) > self.max_padding_length:
return {}
if len(ret["images"]) > self.max_num_frame:
return {}
self.unjoint_samples += 1
if self.max_padding_length > 2**17:
log_interval = 1e3
elif self.max_padding_length > 2**15:
log_interval = 1e4
else:
log_interval = 1e4
if self.unjoint_samples % log_interval == 0:
print(
f"processed_samples {self.processed_samples} unjoint_samples {self.unjoint_samples}"
)
all_length = len(self.ret[source]["tokens"])
cur_length = len(ret["input_ids"])
# print("self.ret", self.ret.keys())
# print("source", source)
if all_length + cur_length > self.max_padding_length or (
"images" in self.ret[source]
and len(self.ret[source]["images"]) + len(ret["images"]) > self.max_num_image
):
# if "tokens" in self.ret[source] and len(self.ret[source]["tokens"]) > 0:
to_ret = copy.deepcopy(self.ret[source])
self.maybe_init_ret(source, force=True)
else:
to_ret = {}
all_length = len(self.ret[source]["tokens"])
cur_length = len(ret["input_ids"])
if "images" in ret and len(ret["images"]) > 0:
if "images" in self.ret[source]:
self.ret[source]["images"] = torch.cat(
[self.ret[source]["images"], ret["images"]], dim=0
)
ret["image_indices"][1, :, :] += all_length
self.ret[source]["image_indices"] = torch.cat(
[self.ret[source]["image_indices"], ret["image_indices"]], dim=1
)
else:
self.ret[source]["images"] = ret["images"]
self.ret[source]["image_indices"] = ret["image_indices"]
if self.create_attention_mask:
self.ret[source]["attention_mask"] += ret["attention_mask"]
if self.create_attention_mask_2d:
self.ret[source]["attention_mask_2d"][:, all_length:, :all_length] = 0
if self.create_position_ids:
self.ret[source]["position_ids"] += list(range(cur_length))
self.ret[source]["tokens"] += ret["input_ids"]
self.ret[source]["labels"] += ret["labels"]
self.ret[source]["actual_seq_len"] += [all_length + cur_length]
if "tokens" in to_ret:
if self.create_position_ids:
if self.reset_position_ids:
pass
else:
to_ret["position_ids"] = list(range(len(to_ret["tokens"])))
if self.create_attention_mask_2d:
if sefl.reset_attention_mask:
pass
else:
to_ret["attention_mask_2d"] = torch.tril(
torch.ones(
(1, self.max_padding_length, self.max_padding_length),
dtype=torch.bool,
)
)
if self.shift_token:
to_ret["tokens"] = to_ret["tokens"][:-1]
to_ret["labels"] = to_ret["labels"][1:]
to_ret["actual_seq_len"][-1] -= 1
if self.create_position_ids:
to_ret["position_ids"] = to_ret["position_ids"][:-1]
if self.create_attention_mask:
to_ret["attention_mask"] = to_ret["attention_mask"][:-1]
if self.create_attention_mask_2d:
to_ret["attention_mask_2d"][:, :, -1] = 0
to_ret["attention_mask_2d"][:, -1, :] = 0
assert len(to_ret["tokens"]) == len(
to_ret["labels"]
), f"{len(to_ret['tokens'])} {len(to_ret['labels'])}"
if not self.variable_length and self.max_padding_length > len(to_ret["tokens"]):
to_ret["tokens"] += [self.tokenizer.pad_token_id] * (
self.max_padding_length - len(to_ret["tokens"])
)
to_ret["labels"] += [IGNORE_TOKEN_ID] * (
self.max_padding_length - len(to_ret["labels"])
)
to_ret["actual_seq_len"][-1] = self.max_padding_length
if self.create_position_ids:
to_ret["position_ids"] += to_ret["position_ids"][-1:] * (
self.max_padding_length - len(to_ret["position_ids"])
)
if self.create_attention_mask:
to_ret["attention_mask"] += [0] * (
self.max_padding_length - len(to_ret["attention_mask"])
)
to_ret["tokens"] = to_ret["tokens"][: self.max_padding_length]
to_ret["labels"] = to_ret["labels"][: self.max_padding_length]
to_ret["actual_seq_len"][-1] = self.max_padding_length
if self.create_position_ids:
to_ret["position_ids"] = to_ret["position_ids"][: self.max_padding_length]
if self.create_attention_mask:
to_ret["attention_mask"] = to_ret["attention_mask"][
: self.max_padding_length
]
to_ret["tokens"] = torch.tensor(to_ret["tokens"], dtype=torch.int64)
to_ret["labels"] = torch.tensor(to_ret["labels"], dtype=torch.int64)
to_ret["actual_seq_len"] = torch.tensor(
to_ret["actual_seq_len"], dtype=torch.int64
)
if self.create_position_ids:
to_ret["position_ids"] = torch.tensor(
to_ret["position_ids"], dtype=torch.int64
)
if self.create_attention_mask:
to_ret["attention_mask"] = torch.tensor(
to_ret["attention_mask"], dtype=torch.int64
)
if self.create_attention_mask_2d:
attention_mask_2d = to_ret.pop("attention_mask_2d")
attention_mask_2d = attention_mask_2d.masked_fill(
(to_ret["attention_mask"] < 0.5).view(1, 1, self.max_padding_length),
value=0,
)
attention_mask_2d = attention_mask_2d < 0.5
to_ret["attention_mask"] = attention_mask_2d
if self.create_loss_mask:
loss_mask = torch.where(to_ret["labels"] == IGNORE_TOKEN_ID, 0, 1)
to_ret["loss_mask"] = loss_mask.to(torch.float32)
if not self.reset_position_ids and not self.reset_attention_mask:
to_ret.pop("actual_seq_len")
# print("to_ret[tokens]", to_ret["tokens"])
# print("to_ret[labels]", to_ret["labels"])
return to_ret
except Exception as error:
with open(os.path.join(self.output_dir, "dataset_error.log"), "a") as f:
print(error, file=f)
print([self.raw_data[index]], file=f)
if index == 0:
index += 1
else:
index -= 1
def preprocess(
source,
tokenizer: transformers.PreTrainedTokenizer,
image_token_length: int,
system_message: str = "You are a helpful assistant.",
image_processor=None,
is_begin: bool = True,
max_num_frame: int = 8,
max_fps: int = 1,
) -> Dict:
# <s>[INST]Hello, how are you?[/INST]I'm doing great. How can I help you today?</s>[INST]I'd like to show off how chat templating works![/INST]
from ..constants import (
IMG_START_TOKEN,
IMG_END_TOKEN,
IMG_CONTEXT_TOKEN,
VID_START_TOKEN,
VID_END_TOKEN,
VID_CONTEXT_TOKEN,
PATCH_START_TOKEN,
PATCH_END_TOKEN,
PATCH_CONTEXT_TOKEN,
)
image_tag = "<image>"
video_tag = "<video>"
human_roles = ["user", "human"]
gpt_roles = ["assistant", "gpt"]
system_roles = [
"system",
]
IMG_CONTEXT_ID = tokenizer(IMG_CONTEXT_TOKEN, add_special_tokens=False).input_ids
IMG_START_ID = tokenizer(IMG_START_TOKEN, add_special_tokens=False).input_ids
IMG_END_ID = tokenizer(IMG_END_TOKEN, add_special_tokens=False).input_ids
VID_CONTEXT_ID = tokenizer(VID_CONTEXT_TOKEN, add_special_tokens=False).input_ids
VID_START_ID = tokenizer(VID_START_TOKEN, add_special_tokens=False).input_ids
VID_END_ID = tokenizer(VID_END_TOKEN, add_special_tokens=False).input_ids
PATCH_CONTEXT_ID = tokenizer(PATCH_CONTEXT_TOKEN, add_special_tokens=False).input_ids
PATCH_START_ID = tokenizer(PATCH_START_TOKEN, add_special_tokens=False).input_ids
PATCH_END_ID = tokenizer(PATCH_END_TOKEN, add_special_tokens=False).input_ids
assert len(IMG_CONTEXT_ID) == 1
assert len(IMG_START_ID) == 1
assert len(IMG_END_ID) == 1
assert len(VID_CONTEXT_ID) == 1
assert len(VID_START_ID) == 1
assert len(VID_END_ID) == 1
assert len(PATCH_CONTEXT_ID) == 1
assert len(PATCH_START_ID) == 1
assert len(PATCH_END_ID) == 1
IMG_CONTEXT_ID = IMG_CONTEXT_ID[0]
IMG_START_ID = IMG_START_ID[0]
IMG_END_ID = IMG_END_ID[0]
VID_CONTEXT_ID = VID_CONTEXT_ID[0]
VID_START_ID = VID_START_ID[0]
VID_END_ID = VID_END_ID[0]
PATCH_CONTEXT_ID = PATCH_CONTEXT_ID[0]
PATCH_START_ID = PATCH_START_ID[0]
PATCH_END_ID = PATCH_END_ID[0]
BOS_ID = tokenizer.bos_token_id
EOS_ID = tokenizer.eos_token_id
B_INST = "[INST]"
E_INST = "[/INST]"
B_SYS = "<<SYS>>\n"
E_SYS = "\n<</SYS>>\n\n"
nl_tokens = tokenizer("\n", add_special_tokens=False).input_ids
B_SYS_IDS = tokenizer(B_SYS, add_special_tokens=False).input_ids
E_SYS_IDS = tokenizer(E_SYS, add_special_tokens=False).input_ids
B_INST_IDS = tokenizer(B_INST, add_special_tokens=False).input_ids
E_INST_IDS = tokenizer(E_INST, add_special_tokens=False).input_ids
input_ids, targets = [], []
images = []
image_indices = []
conversations = source["conversations"]
if is_begin:
input_ids += [BOS_ID]
targets += [IGNORE_TOKEN_ID]
if conversations[0]["role"] == "system":
custom_system = True
else:
custom_system = False
if not custom_system and system_message is not None and len(system_message) > 0:
for jj in range(0, len(conversations)):
if conversations[jj]["role"] in human_roles:
conversations[jj]["content"] = (
system_message + "\n\n" + conversations[jj]["content"]
)
# print(f"input_ids {input_ids}")
# print(f"targets {targets}")
for j, sentence in enumerate(conversations):
role = sentence["role"]
content = sentence["content"]
# ----------------------------------------------------------------
# image
content = content.replace(image_tag, IMG_CONTEXT_TOKEN)
if IMG_START_TOKEN in content:
source["images"] = []
bos_pos = [m.start() for m in re.finditer(IMG_START_TOKEN, value)]
eos_pos = [m.start() for m in re.finditer(IMG_END_TOKEN, value)]
# print(bos_pos, eos_pos)
assert len(bos_pos) == len(eos_pos)
new_content = ""
st = 0
for a, b in zip(bos_pos, eos_pos):
img_path = content[a + len(IMG_START_TOKEN) : b]
new_value += content[st:a] + IMG_CONTEXT_TOKEN
st = b + len(IMG_END_TOKEN)
source["images"].append(img_path)
new_value += content[st:]
content = new_value
# ----------------------------------------------------------------
# video
content = content.replace(video_tag, VID_CONTEXT_TOKEN)
if VID_START_TOKEN in content:
source["videos"] = []
bos_pos = [m.start() for m in re.finditer(VID_START_TOKEN, value)]
eos_pos = [m.start() for m in re.finditer(VID_END_TOKEN, value)]
# print(bos_pos, eos_pos)
assert len(bos_pos) == len(eos_pos)
new_content = ""
st = 0
for a, b in zip(bos_pos, eos_pos):
vid_path = content[a + len(VID_START_TOKEN) : b]
new_value += content[st:a] + VID_CONTEXT_TOKEN
st = b + len(VID_END_TOKEN)
source["videos"].append(vid_path)
new_value += content[st:]
content = new_value
# ----------------------------------------------------------------
# text
if role in human_roles:
_input_id = (
B_INST_IDS + tokenizer(content, add_special_tokens=False).input_ids + E_INST_IDS
)
_target = [IGNORE_TOKEN_ID] * len(_input_id)
elif role in gpt_roles:
_input_id = tokenizer(content, add_special_tokens=False).input_ids + [EOS_ID]
_target = tokenizer(content, add_special_tokens=False).input_ids + [EOS_ID]
if "type" in sentence:
if sentence["type"] == "wrong answer":
_target = [IGNORE_TOKEN_ID] * (len(_input_id) - 1) + [EOS_ID]
elif role in system_roles:
for jj in range(j + 1, len(conversations)):
if conversations[jj]["role"] in human_roles:
conversations[jj]["content"] = content + "\n\n" + conversations[jj]["content"]
_input_id = []
_target = []
else:
raise NotImplementedError
input_ids += _input_id
targets += _target
# ----------------------------------------------------------------
# image
if (
"images" in source
and isinstance(source["images"], list)
and None not in source["images"]
and len(source["images"])
):
img_positions = [i for i, x in enumerate(input_ids) if x == IMG_CONTEXT_ID]
assert len(img_positions) == len(source["images"]), source
new_input_ids = []
new_targets = []
st = 0
for img_idx, img_pos in enumerate(img_positions):
image_patches, (best_width, best_height) = image_processor.process_images_with_subpatch(
source["images"][img_idx]
)
images.append(image_patches)
new_input_ids += input_ids[st:img_pos]
new_targets += targets[st:img_pos]
new_input_ids += [IMG_START_ID]
new_targets += [IGNORE_TOKEN_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [IMG_CONTEXT_ID] * image_token_length
new_targets += [IGNORE_TOKEN_ID] * image_token_length
new_input_ids += [IMG_END_ID]
new_targets += [IGNORE_TOKEN_ID]
if len(image_patches) > 1:
for i in range(0, best_height, image_processor.patch_size):
new_input_ids += nl_tokens
new_targets += [IGNORE_TOKEN_ID] * len(nl_tokens)
for j in range(0, best_width, image_processor.patch_size):
new_input_ids += [PATCH_START_ID]
new_targets += [IGNORE_TOKEN_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(
len(new_input_ids), len(new_input_ids) + image_token_length
)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [PATCH_CONTEXT_ID] * image_token_length
new_targets += [IGNORE_TOKEN_ID] * image_token_length
new_input_ids += [PATCH_END_ID]
new_targets += [IGNORE_TOKEN_ID]
st = img_pos + 1
new_input_ids += input_ids[st:]
new_targets += targets[st:]
input_ids = new_input_ids
targets = new_targets
# ----------------------------------------------------------------
# video
if (
"videos" in source
and isinstance(source["videos"], list)
and None not in source["videos"]
and len(source["videos"])
):
vid_positions = [i for i, x in enumerate(input_ids) if x == VID_CONTEXT_ID]
assert len(vid_positions) == len(source["videos"]), source
new_input_ids = []
new_targets = []
st = 0
for vid_idx, vid_pos in enumerate(vid_positions):
vid_path = source["videos"][vid_idx]
new_input_ids += input_ids[st:vid_pos]
new_targets += targets[st:vid_pos]
video_frames, _ = image_processor.process_video(vid_path, max_num_frame, max_fps)
images.append(video_frames)
for _ in video_frames:
new_input_ids += [VID_START_ID]
new_targets += [IGNORE_TOKEN_ID]
image_indice_b = torch.zeros(
1, image_token_length, dtype=torch.int64
) # This will change in collate_fn
image_indice_s = (
torch.arange(len(new_input_ids), len(new_input_ids) + image_token_length)
.unsqueeze(0)
.repeat(1, 1)
)
image_indice_b_s = torch.stack(
[image_indice_b, image_indice_s], dim=0
) # 2, num_image, image_length
image_indices.append(image_indice_b_s)
new_input_ids += [VID_CONTEXT_ID] * image_token_length
new_targets += [IGNORE_TOKEN_ID] * image_token_length
new_input_ids += [VID_END_ID]
new_targets += [IGNORE_TOKEN_ID]
st = vid_pos + 1
new_input_ids += input_ids[st:]
new_targets += targets[st:]
input_ids = new_input_ids
targets = new_targets
if len(images) > 0:
images = torch.cat(images, dim=0)
if len(image_indices) > 0:
image_indices = torch.cat(image_indices, dim=1)
attention_mask = [1] * len(input_ids)
# print("source", source, flush=True)
# print("input_ids", input_ids[:100], flush=True)
# print("targets", targets[:100], flush=True)
# print("images", [xx.shape for x in images for xx in x], flush=True)
return dict(
input_ids=input_ids,
labels=targets,
attention_mask=attention_mask,
images=images,
image_indices=image_indices,
)
|