File size: 12,003 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import contextlib
import json
import logging
import os
import pdb
import re
import traceback
import uuid

import numpy as np
import torch
import yaml
from PIL import Image

from torchvision import transforms
from torchvision.transforms import InterpolationMode

from .processor.audio_processor import AudioProcessor
from .processor.image_processor import ImageProcessor
from .utils import draw_data

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


class BaseDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        cfg_path,
        tokenizer,
        image_size=448,
        image_token_length=1024,
        max_padding_length=32768,
        variable_length=False,
        output_dir="",
        add_task_symbol=True,
        training_args=None,
        shift_token=False,
        create_position_ids=True,
        create_attention_mask=True,
        create_attention_mask_2d=False,
        create_loss_mask=False,
        max_num_frame=8,
        max_fps=1,
        reset_position_ids=False,
        reset_attention_mask=False,
        min_patch_grid=1,
        max_patch_grid=6,
        process_type="anyres",
        normalize_type="imagenet",
        seed=42,
        cross_dataset_joint=False,
        dataset_joint=True,
        audio_tokenizer_type=None,
        audio_tokenizer_path=None,
        text_audio_interval_ratio=None,
        use_megatron=True,
    ):
        super(BaseDataset, self).__init__()

        self.cfg_path = cfg_path
        with open(self.cfg_path, "r", encoding="utf8") as cfg_file:
            cfg_data = cfg_file.read()

        self.cfg = yaml.load(cfg_data, Loader=yaml.CLoader)
        logger.info(f"cfg {self.cfg}")

        self.tokenizer = tokenizer
        self.max_padding_length = max_padding_length
        self.variable_length = variable_length
        self.output_dir = output_dir
        self.training_args = training_args
        self.shift_token = shift_token
        self.create_position_ids = create_position_ids
        self.create_attention_mask = create_attention_mask
        self.create_attention_mask_2d = create_attention_mask_2d
        self.create_loss_mask = create_loss_mask
        self.max_num_frame = max_num_frame
        self.max_fps = max_fps
        self.reset_position_ids = reset_position_ids
        self.reset_attention_mask = reset_attention_mask

        self.seed = seed
        self.cross_dataset_joint = cross_dataset_joint
        self.dataset_joint = dataset_joint

        self.image_size = image_size
        self.image_token_length = image_token_length

        self.do_dataset_format = self.cfg.get("do_dataset_format", False)
        self.do_dataset_cast = self.cfg.get("do_dataset_cast", False)
        self.xlsx_sample_num = self.cfg.get("xlsx_sample_num", 5)

        self.processor = {}
        self.processor["image"] = ImageProcessor(
            process_type,
            image_size=self.image_size,
            normalize_type=normalize_type,
            min_patch_grid=min_patch_grid,
            max_patch_grid=max_patch_grid,
        )

        self.processor["audio"] = AudioProcessor(
            audio_tokenizer_path=audio_tokenizer_path,
            audio_tokenizer_type=audio_tokenizer_type,
            text_audio_interval_ratio=text_audio_interval_ratio
        )

        if use_megatron:
            self.load_data()
        else:
            with main_process_first(local=True, desc="Loading data"):
                self.load_data()

        self.processed_samples = 0
        self.unjoint_samples = 0
        self.joint_samples = 0
        self.skip_samples = 0

    def load_data(self):
        from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

        raw_data = None

        sampled_data = {}
        source_idx = 0
        for data_name, data_info in self.cfg["dataset"].items():
            data_ratio = data_info.get("ratio", 1)
            data_num = data_info.get("num", 999999999)

            if data_ratio == 0:
                continue

            if data_num == 0:
                continue

            for data_idx, data_path in enumerate(data_info["data_paths"]):

                if not os.path.isfile(data_path) and not os.path.isdir(data_path):
                    logger.warning(f"Data file no found {data_path}")
                    continue

                this_data = load_json(data_path, self.output_dir)
                # this_data = load_data_one(data_path, self.outout_dir)
                if this_data is None:
                    logger.warning(f"Failed to load {data_path}")
                    continue
                # print(f"this_data {this_data}")

                column_names = list(this_data.features)
                if "id" in column_names:
                    this_data = this_data.remove_columns("id")

                # sources = [data_path] * len(this_data)
                sources = [source_idx] * len(this_data)
                source_idx += 1
                # sources = [data_name] * len(this_data)
                this_data = this_data.add_column("source", sources)

                if "images" not in column_names:
                    # images = [[]] * len(this_data)
                    images = [None] * len(this_data)
                    this_data = this_data.add_column("images", images)

                if "videos" not in column_names:
                    # videos = [[]] * len(this_data)
                    videos = [None] * len(this_data)
                    this_data = this_data.add_column("videos", videos)

                if "audios" not in column_names:
                    # videos = [[]] * len(this_data)
                    audios = [None] * len(this_data)
                    this_data = this_data.add_column("audios", videos)

                if False:
                    column_names = list(this_data.features)
                    this_data = this_data.map(
                        format_function_general,
                        batched=True,
                        batch_size=2560,
                        num_proc=1,
                        # batch_size=1,
                        # num_proc=1,
                        remove_columns=column_names,
                        keep_in_memory=False,
                        desc="Running format on dataset",
                    )

                this_data = this_data.shuffle(seed=self.seed)
                # this_data = this_data.flatten_indices()
                this_data = this_data.shuffle(seed=self.seed)
                # this_data = this_data.flatten_indices()

                data_ratio = float(data_ratio)
                total_num = len(this_data)
                used_num = min(int(total_num * data_ratio), data_num)
                logger.info(f"total_num {total_num}")
                logger.info(f"data_ratio {data_ratio}")
                logger.info(f"data_num {data_num}")
                logger.info(f"used_num {used_num}")

                indices = [x % total_num for x in range(used_num)]

                this_data = this_data.select(indices)

                if raw_data is None:
                    raw_data = this_data
                else:
                    if self.do_dataset_cast:
                        this_data = this_data.cast(raw_data.features)
                    raw_data = concatenate_datasets([raw_data, this_data])

                sampled_data[data_path] = {}
                sampled_data[data_path]["data"] = this_data.select(
                    range(min(self.xlsx_sample_num, used_num))
                )
                sampled_data[data_path]["total_num"] = total_num
                sampled_data[data_path]["used_num"] = used_num

                logger.info(f"this_data {this_data}")
                logger.info(f"raw_data {raw_data}")
                # logger.info(f"raw_data {raw_data[0]}")
                # logger.info(f"raw_data {raw_data[-1]}")
                logger.info(f"Successful load {data_path}")

        raw_data = raw_data.shuffle(seed=self.seed)
        # raw_data = raw_data.flatten_indices()
        raw_data = raw_data.shuffle(seed=self.seed)
        # raw_data = raw_data.flatten_indices()

        self.raw_data = raw_data

        if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
            output_xlsx = os.path.basename(self.cfg_path).replace("yaml", "xlsx")
            output_xlsx = os.path.join(self.output_dir, output_xlsx)
            logger.info(f"output_xlsx {output_xlsx}")
            draw_data(
                sampled_data,
                output_xlsx,
                tokenizer=self.tokenizer,
                image_processor=self.processor["image"],
            )

        logger.info(f"raw_data {raw_data}")

        if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
            logger.info(f"raw_data {raw_data[:10]}")
            logger.info(f"raw_data {raw_data[-10:]}")

    def __len__(self):
        return len(self.raw_data)


def format_function_general(examples):
    messages = [x for x in examples["messages"]]

    if "images" in examples:
        images = [x for x in examples["images"]]
    else:
        images = [None for _ in messages]

    if "videos" in examples:
        videos = [x for x in examples["videos"]]
    else:
        videos = [None for _ in messages]

    if "audios" in examples:
        audios = [x for x in examples["audios"]]
    else:
        audios = [None for _ in messages]

    return {
        "messages": messages,
        "images": images,
        "videos": videos,
        "audios": audios,
    }


def load_json_A(data_file):
    from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

    with open(data_file, "r") as f:
        raw_data = json.load(f)
    this_data = Dataset.from_list(raw_data)
    return this_data


def load_json_B(data_file):
    from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

    this_data = load_dataset("json", data_files=data_file, keep_in_memory=False)
    return this_data["train"]


def load_json_C(data_file):
    from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

    raw_data = []
    with open(data_file, "r") as f:
        for line in f.readlines():
            d = json.loads(line)
            # raw_data.append({"conversations": d["conversations"], "id": d["id"]})
            if "conversations" in d:
                raw_data.append({"conversations": d["conversations"]})
            if "messages" in d:
                raw_data.append({"messages": d["messages"]})
    this_data = Dataset.from_list(raw_data)
    return this_data


def load_json(data_file, output_dir):
    for func in [load_json_B, load_json_A, load_json_C]:
        try:
            this_data = func(data_file)
            return this_data
        except Exception as error:
            with open(os.path.join(output_dir, "data_error.log"), "a") as f:
                print("-" * 100, file=f)
                # print(error, file=f)
                print(traceback.format_exc(), file=f)
            continue
    return None


def load_data_one(data_file, output_dir):
    if data_file.endswith("json") or data_file.endswith("jsonl"):
        return load_json(data_file, output_dir)
    from datasets import Dataset, DatasetDict, concatenate_datasets, load_dataset

    this_data = load_dataset(data_file, keep_in_memory=False)
    return this_data["train"]


@contextlib.contextmanager
def main_process_first(local=True, desc="work"):

    if torch.distributed.is_initialized() and torch.distributed.get_world_size() > 1:
        if local:
            rank = int(os.environ["LOCAL_RANK"])
        else:
            rank = torch.distributed.get_rank()
        is_main_process = rank == 0

        try:
            if not is_main_process:
                torch.distributed.barrier()
            yield
        finally:
            if is_main_process:
                torch.distributed.barrier()
    else:
        yield