File size: 6,783 Bytes
52e4f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import logging
import os
from dataclasses import dataclass
from typing import Dict, List, Sequence, Union

import datasets
import torch
import transformers
from datasets import concatenate_datasets, load_dataset

from .data_collator import DataCollatorForSupervisedDataset, collate_fn_deepspeed
from .dataset_cosyvoice2 import CosyVoice2Dataset
from .dataset_deepseek import DeepSeekDataset
from .dataset_hunyuan import HunyuanDataset
from .dataset_llama3 import Llama3Dataset
from .dataset_mistral import MistralDataset
from .dataset_qwen2 import Qwen2Dataset

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


def build_supervised_dataset_deepspeed(
    model_config,
    model_args,
    data_args,
    training_args,
    tokenizer,
    create_position_ids=True,
    create_loss_mask=False,
    shift_token=False,
):
    logging.info("building dataset...")

    cfg_path = data_args.dataset_name
    max_padding_length = model_args.model_max_length
    output_dir = training_args.output_dir

    # prompt_format = model_args.prompt_format

    create_attention_mask = data_args.create_attention_mask
    create_attention_mask_2d = data_args.create_attention_mask_2d

    image_size = model_args.image_size
    image_token_length = model_args.image_token_length

    max_num_frame = model_args.max_num_frame
    max_fps = model_args.max_fps

    reset_position_ids = data_args.reset_position_ids
    reset_attention_mask = data_args.reset_attention_mask
    variable_length = data_args.variable_length

    min_patch_grid = model_args.min_patch_grid
    max_patch_grid = model_args.max_patch_grid
    process_type = model_args.vision_process_type
    normalize_type = model_args.vision_normalize_type

    audio_tokenizer_path = model_args.audio_tokenizer_path
    audio_tokenizer_type = model_args.audio_tokenizer_type
    text_audio_interval_ratio = model_args.text_audio_interval_ratio

    seed = training_args.seed
    cross_dataset_joint = data_args.cross_dataset_joint
    dataset_joint = data_args.dataset_joint

    if "long_vita" in getattr(model_config, "model_type", None):
        TrainDataset = Qwen2Dataset
    elif "cosyvoice2" in getattr(model_config, "model_type", None):
        TrainDataset = CosyVoice2Dataset
    elif "qwen2" in getattr(model_config, "model_type", None):
        TrainDataset = Qwen2Dataset
    elif getattr(model_config, "model_type", None) == "hunyuan":
        TrainDataset = HunyuanDataset
    elif getattr(model_config, "model_type", None) == "mixtral":
        TrainDataset = Llama2Dataset
    elif "llama" in getattr(model_config, "model_type", None):
        TrainDataset = Llama3Dataset
    elif "deepseek" in getattr(model_config, "model_type", None):
        TrainDataset = DeepSeekDataset
    else:
        raise NotImplementedError

    train_dataset = TrainDataset(
        cfg_path,
        tokenizer,
        image_size=image_size,
        image_token_length=image_token_length,
        max_padding_length=max_padding_length,
        variable_length=variable_length,
        output_dir=output_dir,
        training_args=None,
        shift_token=shift_token,
        create_position_ids=create_position_ids,
        create_attention_mask=create_attention_mask,
        create_attention_mask_2d=create_attention_mask_2d,
        create_loss_mask=create_loss_mask,
        max_num_frame=max_num_frame,
        max_fps=max_fps,
        reset_position_ids=reset_position_ids,
        reset_attention_mask=reset_attention_mask,
        min_patch_grid=min_patch_grid,
        max_patch_grid=max_patch_grid,
        process_type=process_type,
        normalize_type=normalize_type,
        seed=seed,
        cross_dataset_joint=cross_dataset_joint,
        dataset_joint=dataset_joint,
        audio_tokenizer_type=audio_tokenizer_type,
        audio_tokenizer_path=audio_tokenizer_path,
        text_audio_interval_ratio=text_audio_interval_ratio,
        use_megatron=False,
    )
    eval_dataset = None

    # data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    data_collator = collate_fn_deepspeed

    return dict(train=train_dataset, validation=eval_dataset, data_collator=data_collator)


def build_supervised_dataset_megatron(
    args,
    tokenizer,
    create_position_ids=True,
    create_loss_mask=False,
    shift_token=False,
):
    logging.info("building dataset...")

    assert len(args.data_path) == 1
    cfg_path = args.data_path[0]
    max_padding_length = args.max_padding_length
    output_dir = args.save

    prompt_format = args.prompt_format

    create_attention_mask = args.create_attention_mask_in_dataloader
    create_attention_mask_2d = args.create_attention_mask_in_dataloader
    # create_attention_mask=False
    # create_attention_mask_2d=True

    image_size = args.image_size
    image_token_length = args.image_token_length

    max_num_frame = args.max_num_frame
    max_fps = args.max_fps

    reset_position_ids = args.reset_position_ids
    reset_attention_mask = args.reset_attention_mask
    # reset_position_ids=True
    # reset_attention_mask=True

    min_patch_grid = args.min_patch_grid
    max_patch_grid = args.max_patch_grid
    process_type = args.vision_process_type
    normalize_type = args.vision_normalize_type

    seed = args.seed
    cross_dataset_joint = args.cross_dataset_joint
    dataset_joint = args.dataset_joint

    if "qwen2" in prompt_format:
        TrainDataset = Qwen2Dataset
    elif prompt_format == "mistral":
        raise NotImplementedError
        TrainDataset = MistralDataset
    elif prompt_format == "llama3":
        TrainDataset = Llama3Dataset
    if "deepseek" in prompt_format:
        TrainDataset = DeepSeekDataset
    else:
        raise NotImplementedError

    train_dataset = TrainDataset(
        cfg_path,
        tokenizer,
        image_size=image_size,
        image_token_length=image_token_length,
        max_padding_length=max_padding_length,
        variable_length=False,
        output_dir=output_dir,
        training_args=None,
        shift_token=shift_token,
        create_position_ids=create_position_ids,
        create_attention_mask=create_attention_mask,
        create_attention_mask_2d=create_attention_mask_2d,
        create_loss_mask=create_loss_mask,
        max_num_frame=max_num_frame,
        max_fps=max_fps,
        reset_position_ids=reset_position_ids,
        reset_attention_mask=reset_attention_mask,
        min_patch_grid=min_patch_grid,
        max_patch_grid=max_patch_grid,
        process_type=process_type,
        normalize_type=normalize_type,
        seed=seed,
        cross_dataset_joint=cross_dataset_joint,
        dataset_joint=dataset_joint,
        use_megatron=True,
    )
    eval_dataset = None

    return train_dataset, None, None