shellypeng commited on
Commit
e83348e
·
1 Parent(s): 2684052

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -334
app.py CHANGED
@@ -1,344 +1,15 @@
1
  # -*- coding: utf-8 -*-
2
- """Copy of Anime_Pack_Gradio.ipynb
3
 
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
- https://colab.research.google.com/drive/1RxVCwOkq3Q5qlEkQxhFGeUxICBujjEjR
8
  """
9
-
10
-
11
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
12
-
13
- tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
14
-
15
- model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en")
16
-
17
  import gradio as gr
18
- import numpy as np
19
- from PIL import Image
20
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionImg2ImgPipeline
21
-
22
- import torch
23
- from controlnet_aux import HEDdetector
24
- from diffusers.utils import load_image
25
-
26
- import concurrent.futures
27
- from threading import Thread
28
- from compel import Compel
29
-
30
-
31
- from transformers import pipeline
32
-
33
-
34
- model_ckpt = "papluca/xlm-roberta-base-language-detection"
35
- pipe = pipeline("text-classification", model=model_ckpt)
36
-
37
-
38
-
39
- device="cuda" if torch.cuda.is_available() else "cpu"
40
-
41
- hidden_booster_text = ", loraeyes, beautiful face, small boobs, a cup"
42
- hidden_negative = "big boobs, huge boobs, sexy, dirty, d cup, e cup, g cup, slutty, badhandv4, ng_deepnegative_v1_75t, worst quality, low quality, extra digits, text, signature, bad anatomy, mutated hand, error, missing finger, cropped, worse quality, bad quality, lowres, floating limbs, bad hands, anatomical nonsense"
43
- hidden_cn_booster_text = ",loraeyes漂亮的脸,小胸,贫乳,a罩杯"
44
- hidden_cn_negative = "大胸, ,, !, 。, ;,巨乳,性感,脏,d罩杯,e罩杯,g罩杯,骚,骚气,badhandv4, ng_deepnegative_v1_75t"
45
-
46
- def translate(prompt):
47
- trans_text = prompt
48
- translated = model.generate(**tokenizer(trans_text, return_tensors="pt", padding=True))
49
- tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
50
- tgt_text = ''.join(tgt_text)[:-1]
51
- return tgt_text
52
-
53
- hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
54
-
55
- controlnet_scribble = ControlNetModel.from_pretrained(
56
- "lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False, )
57
-
58
- pipe_scribble = StableDiffusionControlNetPipeline.from_single_file(
59
- "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_scribble, safety_checker=None, requires_safety_checker=False,
60
- torch_dtype=torch.float16,
61
- )
62
-
63
- # pipe.load_lora_weights("shellypeng/detail-tweaker")
64
- # pipe.load_lora_weights("shellypeng/midjourney-anime")
65
-
66
- # pipe.load_lora_weights("shellypeng/animetarot")
67
- # pipe.load_lora_weights("shellypeng/anime-stickers-v3")
68
- # pipe.load_lora_weights("shellypeng/anime-magazine")
69
-
70
- # pipe_img2img.load_lora_weights("yenojunie/slit-pupils")
71
-
72
- # pipe_scribble.load_lora_weights("shellypeng/detail-tweaker")
73
- # pipe_scribble.fuse_lora(lora_scale=0.1)
74
- pipe_scribble.load_lora_weights("shellypeng/lora-eyes")
75
- pipe_scribble.fuse_lora(lora_scale=0.1)
76
- # pipe_scribble.load_lora_weights("shellypeng/beautiful-eyes")
77
- # pipe_scribble.fuse_lora(lora_scale=0.1)
78
-
79
- pipe_scribble.load_textual_inversion("shellypeng/bad-prompt")
80
- pipe_scribble.load_textual_inversion("shellypeng/badhandv4")
81
- # pipe.load_textual_inversion("shellypeng/easynegative")
82
- pipe_scribble.load_textual_inversion("shellypeng/deepnegative")
83
- pipe_scribble.load_textual_inversion("shellypeng/verybadimagenegative")
84
- pipe_scribble.scheduler = DPMSolverMultistepScheduler.from_config(pipe_scribble.scheduler.config, use_karras_sigmas=True)
85
- # pipe.enable_model_cpu_offload()
86
- pipe_scribble.safety_checker = None
87
- pipe_scribble.requires_safety_checker = False
88
- pipe_scribble.to(device)
89
-
90
- def scribble_to_image(text, neg_prompt_box, input_img):
91
- """
92
- pass the sd model and do scribble to image
93
- include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
94
- expression to improve hand)
95
- """
96
-
97
-
98
-
99
- # if auto detect detects chinese => auto turn on chinese prompting checkbox
100
- # change param "bag" below to text, image param below to input_img
101
- input_img = Image.fromarray(input_img)
102
- input_img = hed(input_img, scribble=True)
103
- input_img = load_image(input_img)
104
- # global prompt
105
- lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
106
- lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
107
- if lang_check_label == 'zh' and lang_check_score >= 0.85:
108
- text = translate(text)
109
- compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
110
- prompt = text + hidden_booster_text
111
- prompt_embeds = compel_proc(prompt)
112
- negative_prompt = neg_prompt_box + hidden_negative
113
- negative_prompt_embeds = compel_proc(negative_prompt)
114
-
115
- res_image0 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
116
- res_image1 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
117
- res_image2 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
118
- res_image3 = pipe_scribble(image=input_img, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
119
-
120
- return res_image0, res_image1, res_image2, res_image3
121
-
122
- def real_img2img_to_anime(text, neg_prompt_box, input_img):
123
- """
124
- pass the sd model and do scribble to image
125
- include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
126
- expression to improve hand)
127
- """
128
- input_img = Image.fromarray(input_img)
129
- input_img = load_image(input_img)
130
- lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
131
- lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
132
- if lang_check_label == 'zh' and lang_check_score >= 0.85:
133
- text = translate(text)
134
-
135
- compel_proc = Compel(tokenizer=pipe_scribble.tokenizer, text_encoder=pipe_scribble.text_encoder)
136
- prompt = text + hidden_booster_text
137
- prompt_embeds = compel_proc(prompt)
138
-
139
- negative_prompt = neg_prompt_box + hidden_negative
140
- negative_prompt_embeds = compel_proc(negative_prompt)
141
- # input_img = depth_estimator(input_img)['depth']
142
- res_image0 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
143
- res_image1 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
144
- res_image2 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
145
- res_image3 = pipe_img2img(image=input_img, strength=0.6, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=40).images[0]
146
-
147
- return res_image0, res_image1, res_image2, res_image3
148
-
149
-
150
- theme = gr.themes.Soft(
151
- primary_hue="orange",
152
- secondary_hue="orange",
153
- ).set(
154
- block_background_fill='*primary_50'
155
- )
156
-
157
- # %cd /content/drive/MyDrive/stable-diffusion-webui-colab/stable-diffusion-webui
158
-
159
- pipe_img2img = StableDiffusionImg2ImgPipeline.from_single_file("https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors",
160
- torch_dtype=torch.float16, safety_checker=None, requires_safety_checker=False)
161
-
162
- # pipe_img2img.load_lora_weights("shellypeng/detail-tweaker")
163
- # pipe_img2img.fuse_lora(lora_scale=0.1)
164
- pipe_img2img.load_lora_weights("shellypeng/lora-eyes")
165
- pipe_img2img.fuse_lora(lora_scale=0.1)
166
- # pipe_img2img.load_lora_weights("shellypeng/beautiful-eyes")
167
- # pipe_img2img.fuse_lora(lora_scale=0.1)
168
-
169
- pipe_img2img.load_textual_inversion("shellypeng/bad-prompt")
170
- pipe_img2img.load_textual_inversion("shellypeng/badhandv4")
171
- # pipe.load_textual_inversion("shellypeng/easynegative")
172
- pipe_img2img.load_textual_inversion("shellypeng/deepnegative")
173
- pipe_img2img.load_textual_inversion("shellypeng/verybadimagenegative")
174
- pipe_img2img.scheduler = DPMSolverMultistepScheduler.from_config(pipe_img2img.scheduler.config, use_karras_sigmas=True)
175
- # pipe.enable_model_cpu_offload()
176
- pipe_img2img.safety_checker = None
177
- pipe_img2img.requires_safety_checker = False
178
- pipe_img2img.to(device)
179
-
180
- # pipe_img2img.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
181
-
182
- # depth_estimator = pipeline('depth-estimation')
183
-
184
- # controlnet_depth = ControlNetModel.from_pretrained(
185
- # "lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16
186
- # )
187
-
188
-
189
- # # models that worked well: anime god, pastel dream,
190
- # # https://huggingface.co/shellypeng/featureless/tree/main
191
- # pipe_depth = StableDiffusionControlNetPipeline.from_single_file(
192
- # "https://huggingface.co/shellypeng/anime-god/blob/main/animeGod_v10.safetensors", controlnet=controlnet_depth,
193
- # torch_dtype=torch.float16,
194
- # )
195
- # # pipe = StableDiffusionControlNetPipeline.from_pretrained("furusu/SSD-1B-anime",
196
- # # torch_dtype=torch.float16
197
- # # )
198
-
199
- # pipe_depth.load_lora_weights("shellypeng/detail-tweaker")
200
- # pipe_depth.fuse_lora(lora_scale=0.1)
201
- # # pipe.load_lora_weights("shellypeng/stylized-3d")
202
- # # pipe.load_lora_weights("shellypeng/midjourney-anime")
203
-
204
- # # pipe.load_lora_weights("shellypeng/animetarot")
205
- # # pipe.load_lora_weights("shellypeng/anime-stickers-v3")
206
- # # pipe.load_lora_weights("shellypeng/anime-magazine")
207
-
208
-
209
-
210
- # pipe_depth.load_textual_inversion("shellypeng/bad-prompt")
211
- # pipe_depth.load_textual_inversion("shellypeng/badhandv4")
212
- # # pipe.load_textual_inversion("shellypeng/easynegative")
213
- # pipe_depth.load_textual_inversion("shellypeng/deepnegative")
214
- # pipe_depth.load_textual_inversion("shellypeng/verybadimagenegative")
215
- # pipe_depth.scheduler = DPMSolverMultistepScheduler.from_config(pipe_depth.scheduler.config, use_karras_sigmas=True)
216
- # # pipe.enable_model_cpu_offload()
217
- # def dummy(images, **kwargs):
218
- # return images, False
219
- # pipe_depth.safety_checker = lambda images, **kwargs: (images, [False] * len(images))
220
- # pipe_depth.to(device)
221
- # # pipe.load_lora_weights("shellypeng/detail-tweaker", weight_name="add_detail.safetensors")
222
-
223
- # # load textual inversion negative embeddings!!!: pipe.load_textual_inversion("sd-concepts-library/cat-toy")
224
-
225
- # def real_to_anime(text, input_img):
226
- # """
227
- # pass the sd model and do scribble to image
228
- # include Adetailer, detail tweaker lora, prompt backend include: beautiful eyes, beautiful face, beautiful hand, (maybe infer from user's prompt for gesture and facial
229
- # expression to improve hand)
230
- # """
231
- # input_img = Image.fromarray(input_img)
232
- # input_img = load_image(input_img)
233
- # input_img = depth_estimator(input_img)['depth']
234
- # res_image0 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
235
- # res_image1 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
236
- # res_image2 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
237
- # res_image3 = pipe_depth(prompt, input_img, negative_prompt=hidden_negative, num_inference_steps=40).images[0]
238
-
239
- # return res_image0, res_image1, res_image2, res_image3
240
-
241
-
242
- # theme = gr.themes.Soft(
243
- # primary_hue="orange",
244
- # secondary_hue="orange",
245
- # ).set(
246
- # block_background_fill='*primary_50'
247
- # )
248
-
249
- def zh_prompt_info(text, neg_text, chinese_check):
250
- can_raise_info = ""
251
- lang_check_label = pipe(text, top_k=1, truncation=True)[0]['label']
252
- lang_check_score = pipe(text, top_k=1, truncation=True)[0]['score']
253
- neg_lang_check_label = pipe(neg_text, top_k=1, truncation=True)[0]['label']
254
- neg_lang_check_score = pipe(neg_text, top_k=1, truncation=True)[0]['score']
255
- print(lang_check_label)
256
- if lang_check_label == 'zh' and lang_check_score >= 0.85:
257
- if not chinese_check:
258
- chinese_check = True
259
- can_raise_info = "zh"
260
- if neg_lang_check_label == 'en' and neg_lang_check_score >= 0.85:
261
- can_raise_info = "invalid"
262
- return True, can_raise_info
263
- elif lang_check_label == 'en' and lang_check_score >= 0.85:
264
- if chinese_check:
265
- chinese_check = False
266
- can_raise_info = "en"
267
- if neg_lang_check_label == 'zh' and neg_lang_check_score >= 0.85:
268
- can_raise_info = "invalid"
269
- return False, can_raise_info
270
- return chinese_check, can_raise_info
271
- def mult_thread_img2img(prompt_box, neg_prompt_box, image_box):
272
- with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
273
- future = executor.submit(real_img2img_to_anime, prompt_box, neg_prompt_box, image_box)
274
- image1, image2, image3, image4 = future.result()
275
- return image1, image2, image3, image4
276
- def mult_thread_scribble(prompt_box, neg_prompt_box, image_box):
277
- with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
278
- future = executor.submit(scribble_to_image, prompt_box, neg_prompt_box, image_box)
279
- image1, image2, image3, image4 = future.result()
280
- return image1, image2, image3, image4
281
- def mult_thread_lang_class(prompt_box, neg_prompt_box, chinese_check):
282
-
283
- with concurrent.futures.ThreadPoolExecutor(max_workers=12000) as executor:
284
- future = executor.submit(zh_prompt_info, prompt_box, neg_prompt_box, chinese_check)
285
- chinese_check, can_raise_info = future.result()
286
- if can_raise_info == "zh":
287
- gr.Info("Chinese Language Detected, Switching to Chinese Prompt Mode")
288
- elif can_raise_info == "en":
289
- gr.Info("English Language Detected, Disabling Chinese Prompt Mode")
290
- return chinese_check
291
-
292
- with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="ShellAI Apps") as iface:
293
- with gr.Tab("Animefier"):
294
- with gr.Row(equal_height=True):
295
- with gr.Column():
296
- with gr.Row(equal_height=True):
297
- with gr.Column(scale=4):
298
- prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
299
- neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
300
- with gr.Row(equal_height=True):
301
- chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
302
-
303
- image_box = gr.Image(label="Input Image", height=350)
304
- gen_btn = gr.Button(value="Generate")
305
-
306
- with gr.Row(equal_height=True):
307
- global image1
308
- global image2
309
- global image3
310
- global image4
311
- image1 = gr.Image(label="Result 1")
312
- image2 = gr.Image(label="Result 2")
313
- image3 = gr.Image(label="Result 3")
314
- image4 = gr.Image(label="Result 4")
315
-
316
-
317
- gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
318
- gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_img2img, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
319
-
320
- with gr.Tab("AniSketch"):
321
- with gr.Row(equal_height=True):
322
- with gr.Column():
323
- with gr.Row(equal_height=True):
324
- with gr.Column(scale=4):
325
- prompt_box = gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=3)
326
- neg_prompt_box = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt(things you don't want to include in the generated image)", lines=3)
327
- with gr.Row(equal_height=True):
328
- chinese_check = gr.Checkbox(label="Chinese Prompt Mode", info="Click here to enable Chinese Prompting(点此触发中文提示词输入)")
329
-
330
- image_box = gr.Image(label="Input Image", height=350)
331
- gen_btn = gr.Button(value="Generate")
332
- with gr.Row(equal_height=True):
333
- image1 = gr.Image(label="Result 1")
334
- image2 = gr.Image(label="Result 2")
335
- image3 = gr.Image(label="Result 3")
336
- image4 = gr.Image(label="Result 4")
337
 
338
- gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_lang_class, inputs=[prompt_box, neg_prompt_box, chinese_check], outputs=[chinese_check], show_progress=False)
339
- gr.on(triggers=[prompt_box.submit, gen_btn.click],fn=mult_thread_scribble, inputs=[prompt_box, neg_prompt_box, image_box], outputs=[image1, image2, image3, image4])
340
 
 
341
 
342
- # gen_btn.click(mult_thread, [prompt_box, image_box, chinese_check], [image1, image2, image3, image4, chinese_check])
343
- iface.dependencies[0]["show_progress"] = "hidden"
344
- iface.launch(debug=True, share=True)
 
1
  # -*- coding: utf-8 -*-
2
+ """Unt24314212442itled0.ipynb
3
 
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
+ https://colab.research.google.com/drive/1ESP90X7oIWvzEaEYUbh2Lp05cgpXSnZ8
8
  """
 
 
 
 
 
 
 
 
9
  import gradio as gr
10
+ import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
 
 
12
 
13
+ HF_TOKEN = os.environ.get("HUGGING_FACE_HUB_TOKEN")
14
 
15
+ gr.load("shellypeng/Anime-AI-Pack", src="spaces", hf_token="HUGGING_FACE_HUB_TOKEN").launch(debug=True, share=True)