Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -35,35 +35,4 @@ def calculate_cosine_similarity(sentence1:str, sentence2:str):
|
|
| 35 |
cosine_sim = util.cos_sim(embeddings[0], embeddings[1])
|
| 36 |
# return str(cosine_sim[0])
|
| 37 |
return round(cosine_sim.item(), 3)
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# Example usage:
|
| 43 |
-
# sentence_a = "The cat sat on the mat."
|
| 44 |
-
# sentence_b = "A feline rested on the rug."
|
| 45 |
-
# similarity = calculate_cosine_similarity(sentence_a, sentence_b)
|
| 46 |
-
|
| 47 |
-
# if similarity is not None:
|
| 48 |
-
# print(f"Cosine similarity between sentence_a and sentence_b: {similarity}")
|
| 49 |
-
|
| 50 |
-
# sentence_c = "This is a completely different sentence."
|
| 51 |
-
# similarity_ac = calculate_cosine_similarity(sentence_a, sentence_c)
|
| 52 |
-
|
| 53 |
-
# if similarity_ac is not None:
|
| 54 |
-
# print(
|
| 55 |
-
# f"Cosine similarity between sentence_a and sentence_c: {similarity_ac}")
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# # Using a different model (you'll need to install it if you haven't already):
|
| 59 |
-
# similarity_different_model = calculate_cosine_similarity(
|
| 60 |
-
# sentence_a, sentence_b, model_name="all-MiniLM-L6-v2")
|
| 61 |
-
# if similarity_different_model is not None:
|
| 62 |
-
# print(f"Cosine similarity (different model): {similarity_different_model}")
|
| 63 |
-
|
| 64 |
-
# # Example of error handling if model name is wrong
|
| 65 |
-
# similarity_error = calculate_cosine_similarity(
|
| 66 |
-
# sentence_a, sentence_b, model_name="wrong-model-name")
|
| 67 |
-
|
| 68 |
-
# if similarity_error is not None:
|
| 69 |
-
# print(f"Cosine similarity (wrong model name): {similarity_error}")
|
|
|
|
| 35 |
cosine_sim = util.cos_sim(embeddings[0], embeddings[1])
|
| 36 |
# return str(cosine_sim[0])
|
| 37 |
return round(cosine_sim.item(), 3)
|
| 38 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|