Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# Function to calculate heat exchanger parameters
|
5 |
+
def design_heat_exchanger(shell_fluid, tube_fluid, flow_rate_shell, inlet_temp_shell, inlet_temp_tube, outlet_temp_shell):
|
6 |
+
# Constants (properties from the book, approximated for common fluids like water)
|
7 |
+
fluid_properties = {
|
8 |
+
"Water": {"cp": 4186, "density": 997},
|
9 |
+
"Oil": {"cp": 2000, "density": 900},
|
10 |
+
"Air": {"cp": 1005, "density": 1.2},
|
11 |
+
}
|
12 |
+
|
13 |
+
# Assumptions
|
14 |
+
U = 500 # Overall heat transfer coefficient (W/m^2.K)
|
15 |
+
tube_outer_diameter = 0.025 # 25 mm (outer diameter)
|
16 |
+
tube_inner_diameter = 0.022 # 22 mm (inner diameter)
|
17 |
+
tube_length = 4.0 # 4 meters (standard length)
|
18 |
+
|
19 |
+
# Extract properties
|
20 |
+
cp_shell = fluid_properties[shell_fluid]["cp"]
|
21 |
+
cp_tube = fluid_properties[tube_fluid]["cp"]
|
22 |
+
|
23 |
+
# Heat duty
|
24 |
+
heat_duty = flow_rate_shell * cp_shell * (outlet_temp_shell - inlet_temp_shell)
|
25 |
+
|
26 |
+
# Estimate outlet temperature of tube-side fluid
|
27 |
+
flow_rate_tube = heat_duty / (cp_tube * (inlet_temp_tube - outlet_temp_shell))
|
28 |
+
outlet_temp_tube = inlet_temp_tube + (heat_duty / (flow_rate_tube * cp_tube))
|
29 |
+
|
30 |
+
# Log Mean Temperature Difference (LMTD)
|
31 |
+
delta_t1 = outlet_temp_shell - inlet_temp_tube
|
32 |
+
delta_t2 = inlet_temp_shell - outlet_temp_tube
|
33 |
+
LMTD = (delta_t1 - delta_t2) / np.log(delta_t1 / delta_t2)
|
34 |
+
|
35 |
+
# Required heat transfer area
|
36 |
+
area = heat_duty / (U * LMTD)
|
37 |
+
|
38 |
+
# Number of tubes
|
39 |
+
tube_cross_sectional_area = np.pi * (tube_outer_diameter / 2) ** 2
|
40 |
+
number_of_tubes = np.ceil(area / (tube_length * tube_cross_sectional_area))
|
41 |
+
|
42 |
+
# Shell diameter (based on tube layout factor)
|
43 |
+
shell_diameter = np.sqrt(number_of_tubes) * tube_outer_diameter * 1.25 # Approximation for tube bundle arrangement
|
44 |
+
|
45 |
+
# Results
|
46 |
+
results = {
|
47 |
+
"Heat Duty (kW)": heat_duty / 1000,
|
48 |
+
"Outlet Temp (Tube Side) [°C]": outlet_temp_tube,
|
49 |
+
"Log Mean Temp Diff (°C)": LMTD,
|
50 |
+
"Heat Transfer Area (m²)": area,
|
51 |
+
"Number of Tubes": int(number_of_tubes),
|
52 |
+
"Shell Diameter (m)": shell_diameter,
|
53 |
+
}
|
54 |
+
return results
|
55 |
+
|
56 |
+
|
57 |
+
# Gradio Interface
|
58 |
+
def heat_exchanger_interface(shell_fluid, tube_fluid, flow_rate_shell, inlet_temp_shell, inlet_temp_tube, outlet_temp_shell):
|
59 |
+
results = design_heat_exchanger(shell_fluid, tube_fluid, flow_rate_shell, inlet_temp_shell, inlet_temp_tube, outlet_temp_shell)
|
60 |
+
return results
|
61 |
+
|
62 |
+
|
63 |
+
# Define inputs and outputs for the Gradio app
|
64 |
+
inputs = [
|
65 |
+
gr.Dropdown(["Water", "Oil", "Air"], label="Shell Side Fluid"),
|
66 |
+
gr.Dropdown(["Water", "Oil", "Air"], label="Tube Side Fluid"),
|
67 |
+
gr.Number(label="Flow Rate (Shell Side) [kg/s]", value=1.0),
|
68 |
+
gr.Number(label="Inlet Temperature (Shell Side) [°C]", value=50.0),
|
69 |
+
gr.Number(label="Inlet Temperature (Tube Side) [°C]", value=20.0),
|
70 |
+
gr.Number(label="Outlet Temperature (Shell Side) [°C]", value=70.0),
|
71 |
+
]
|
72 |
+
|
73 |
+
outputs = gr.JSON(label="Heat Exchanger Design Results")
|
74 |
+
|
75 |
+
# Launch the Gradio app
|
76 |
+
gr.Interface(fn=heat_exchanger_interface, inputs=inputs, outputs=outputs, title="Shell and Tube Heat Exchanger Design").launch()
|