Spaces:
Running
on
Zero
Running
on
Zero
Fix chat history and sending image with every message
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import spaces
|
2 |
import random
|
3 |
import torch
|
|
|
4 |
import gradio as gr
|
5 |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
6 |
|
@@ -8,27 +9,28 @@ model_id = "ibm-granite/granite-vision-3.1-2b-preview"
|
|
8 |
processor = LlavaNextProcessor.from_pretrained(model_id, use_fast=True)
|
9 |
model = LlavaNextForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
texts.append(item["text"])
|
16 |
-
elif item["type"] == "image":
|
17 |
-
texts.append("<image>")
|
18 |
-
return " ".join(texts)
|
19 |
|
20 |
@spaces.GPU
|
21 |
def chat_inference(image, text, temperature, top_p, top_k, max_tokens, conversation):
|
22 |
-
if conversation is None:
|
23 |
-
conversation = [
|
24 |
-
|
|
|
|
|
|
|
25 |
user_content = []
|
|
|
26 |
if image is not None:
|
27 |
if image.width > 512 or image.height > 512:
|
28 |
image.thumbnail((512, 512))
|
29 |
user_content.append({"type": "image", "image": image})
|
30 |
if text and text.strip():
|
31 |
user_content.append({"type": "text", "text": text.strip()})
|
|
|
32 |
if not user_content:
|
33 |
return conversation_display(conversation), conversation
|
34 |
|
@@ -37,6 +39,9 @@ def chat_inference(image, text, temperature, top_p, top_k, max_tokens, conversat
|
|
37 |
"content": user_content
|
38 |
})
|
39 |
|
|
|
|
|
|
|
40 |
inputs = processor.apply_chat_template(
|
41 |
conversation,
|
42 |
add_generation_prompt=True,
|
@@ -59,29 +64,87 @@ def chat_inference(image, text, temperature, top_p, top_k, max_tokens, conversat
|
|
59 |
generation_kwargs["do_sample"] = True
|
60 |
|
61 |
output = model.generate(**inputs, **generation_kwargs)
|
62 |
-
|
|
|
63 |
|
|
|
64 |
conversation.append({
|
65 |
"role": "assistant",
|
66 |
-
"content": [{"type": "text", "text":
|
67 |
})
|
68 |
|
69 |
return conversation_display(conversation), conversation
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def conversation_display(conversation):
|
72 |
chat_history = []
|
73 |
for msg in conversation:
|
74 |
if msg["role"] == "user":
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
return chat_history
|
81 |
|
82 |
def clear_chat():
|
83 |
return [], [], "", None
|
84 |
-
|
85 |
with gr.Blocks(title="Granite Vision 3.1 2B", css="h1 { overflow: hidden; }") as demo:
|
86 |
gr.Markdown("# [Granite Vision 3.1 2B](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview)")
|
87 |
|
@@ -101,7 +164,6 @@ with gr.Blocks(title="Granite Vision 3.1 2B", css="h1 { overflow: hidden; }") as
|
|
101 |
send_button = gr.Button("Chat")
|
102 |
clear_button = gr.Button("Clear Chat")
|
103 |
|
104 |
-
|
105 |
state = gr.State([])
|
106 |
|
107 |
send_button.click(
|
|
|
1 |
import spaces
|
2 |
import random
|
3 |
import torch
|
4 |
+
import hashlib
|
5 |
import gradio as gr
|
6 |
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
7 |
|
|
|
9 |
processor = LlavaNextProcessor.from_pretrained(model_id, use_fast=True)
|
10 |
model = LlavaNextForConditionalGeneration.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
11 |
|
12 |
+
SYSTEM_PROMPT = (
|
13 |
+
"A chat between a curious user and an artificial intelligence assistant. "
|
14 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions."
|
15 |
+
)
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@spaces.GPU
|
18 |
def chat_inference(image, text, temperature, top_p, top_k, max_tokens, conversation):
|
19 |
+
if conversation is None or conversation == []:
|
20 |
+
conversation = [{
|
21 |
+
"role": "system",
|
22 |
+
"content": [{"type": "text", "text": SYSTEM_PROMPT}]
|
23 |
+
}]
|
24 |
+
|
25 |
user_content = []
|
26 |
+
|
27 |
if image is not None:
|
28 |
if image.width > 512 or image.height > 512:
|
29 |
image.thumbnail((512, 512))
|
30 |
user_content.append({"type": "image", "image": image})
|
31 |
if text and text.strip():
|
32 |
user_content.append({"type": "text", "text": text.strip()})
|
33 |
+
|
34 |
if not user_content:
|
35 |
return conversation_display(conversation), conversation
|
36 |
|
|
|
39 |
"content": user_content
|
40 |
})
|
41 |
|
42 |
+
conversation = preprocess_conversation(conversation)
|
43 |
+
|
44 |
+
# Generate input prompt using the chat template.
|
45 |
inputs = processor.apply_chat_template(
|
46 |
conversation,
|
47 |
add_generation_prompt=True,
|
|
|
64 |
generation_kwargs["do_sample"] = True
|
65 |
|
66 |
output = model.generate(**inputs, **generation_kwargs)
|
67 |
+
raw_response = processor.decode(output[0], skip_special_tokens=True)
|
68 |
+
assistant_text = extract_answer(raw_response)
|
69 |
|
70 |
+
# Append the assistant's answer.
|
71 |
conversation.append({
|
72 |
"role": "assistant",
|
73 |
+
"content": [{"type": "text", "text": assistant_text}]
|
74 |
})
|
75 |
|
76 |
return conversation_display(conversation), conversation
|
77 |
|
78 |
+
def extract_answer(response):
|
79 |
+
if "<|assistant|>" in response:
|
80 |
+
return response.split("<|assistant|>")[-1].strip()
|
81 |
+
return response.strip()
|
82 |
+
|
83 |
+
def compute_image_hash(image):
|
84 |
+
image = image.convert("RGB")
|
85 |
+
image_bytes = image.tobytes()
|
86 |
+
return hashlib.md5(image_bytes).hexdigest()
|
87 |
+
|
88 |
+
def preprocess_conversation(conversation):
|
89 |
+
# Find the last sent image in previous user messages (excluding the latest message)
|
90 |
+
last_image_hash = None
|
91 |
+
for msg in reversed(conversation[:-1]):
|
92 |
+
if msg.get("role") == "user":
|
93 |
+
for item in msg.get("content", []):
|
94 |
+
if item.get("type") == "image" and item.get("image") is not None:
|
95 |
+
try:
|
96 |
+
last_image_hash = compute_image_hash(item["image"])
|
97 |
+
break
|
98 |
+
except Exception as e:
|
99 |
+
continue
|
100 |
+
if last_image_hash is not None:
|
101 |
+
break
|
102 |
+
|
103 |
+
# Process the latest user message.
|
104 |
+
latest_msg = conversation[-1]
|
105 |
+
if latest_msg.get("role") == "user":
|
106 |
+
new_content = []
|
107 |
+
for item in latest_msg.get("content", []):
|
108 |
+
if item.get("type") == "image" and item.get("image") is not None:
|
109 |
+
try:
|
110 |
+
current_hash = compute_image_hash(item["image"])
|
111 |
+
except Exception as e:
|
112 |
+
current_hash = None
|
113 |
+
# Remove the image if it matches the last sent image.
|
114 |
+
if last_image_hash is not None and current_hash is not None and current_hash == last_image_hash:
|
115 |
+
continue
|
116 |
+
else:
|
117 |
+
new_content.append(item)
|
118 |
+
else:
|
119 |
+
new_content.append(item)
|
120 |
+
latest_msg["content"] = new_content
|
121 |
+
|
122 |
+
return conversation
|
123 |
+
|
124 |
def conversation_display(conversation):
|
125 |
chat_history = []
|
126 |
for msg in conversation:
|
127 |
if msg["role"] == "user":
|
128 |
+
texts = []
|
129 |
+
for item in msg["content"]:
|
130 |
+
if item["type"] == "image":
|
131 |
+
texts.append("<image>")
|
132 |
+
elif item["type"] == "text":
|
133 |
+
texts.append(item["text"])
|
134 |
+
chat_history.append({
|
135 |
+
"role": "user",
|
136 |
+
"content": "\n".join(texts)
|
137 |
+
})
|
138 |
+
else:
|
139 |
+
chat_history.append({
|
140 |
+
"role": msg["role"],
|
141 |
+
"content": msg["content"][0]["text"]
|
142 |
+
})
|
143 |
return chat_history
|
144 |
|
145 |
def clear_chat():
|
146 |
return [], [], "", None
|
147 |
+
|
148 |
with gr.Blocks(title="Granite Vision 3.1 2B", css="h1 { overflow: hidden; }") as demo:
|
149 |
gr.Markdown("# [Granite Vision 3.1 2B](https://huggingface.co/ibm-granite/granite-vision-3.1-2b-preview)")
|
150 |
|
|
|
164 |
send_button = gr.Button("Chat")
|
165 |
clear_button = gr.Button("Clear Chat")
|
166 |
|
|
|
167 |
state = gr.State([])
|
168 |
|
169 |
send_button.click(
|