File size: 13,739 Bytes
8fde1ac
a7bcef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#!pip install gradio pandas scikit-learn joblib


import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import gradio as gr
import joblib

# Load your dataset (assuming 'AIDA-PHQ-Updated.csv' is in the same directory as your script)
df = pd.read_csv("AIDA-PHQ-Updated.csv")

df.head()

# Ordinal mappings (if not already applied)
ordinal_mappings = {
    'Not Applicable' : 0,
    'Strongly disagree': 1,
    'Disagree': 2,
    'Neutral': 3,
    'Agree': 4,
    'Strongly agree': 5
}

ordinal_columns = [
    'PoorAcademicPerformanceSelfPerception', 'AcademicCriticismSelfPerception',
    'UnsatisfiedAcademicWorkloadSelfPerception', 'NonInterestSubjectOpinion',
    'UnhappySubjectOpinion', 'NonInterestInstitutionOpinion',
    'UnhappyInstitutionOpinion', 'ParentalStrictness', 'ParentalAcademicPressure',
    'ParentalMarriagePressure', 'ParentalCareerPressure',
    'ParentalStudyAbroadPressure', 'ParentalUnderstanding', 'SiblingBonding',
    'ParentalRelationshipStability', 'PeerRelationship', 'TeacherSupport',
    'PartnerRelationshipImpact', 'PhysicalViolenceExperience',
    'SexualViolenceExperience', 'VerbalViolenceExperience',
    'EmotionalViolenceExperience'
]

for col in ordinal_columns:
    df[col] = df[col].map(ordinal_mappings)

# Encode the Gender column
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
df['Gender'] = encoder.fit_transform(df['Gender'])

df.head()

# Split into X and y
X = df.drop('DepressionLevel', axis=1)
y = df['DepressionLevel']

X.columns

X.head()

# Split into train and test sets
random_state = 2024
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=random_state)

# Standardize features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)



# Train Logistic Regression model
logreg = LogisticRegression(C=10.0, solver='newton-cg')
logreg.fit(X_train_scaled, y_train)


# Save the model as a .bin file
with open('model.bin', 'wb') as file:
    joblib.dump(logreg, file)

# Save the scaler as a .bin file
with open('scaler.bin', 'wb') as file:
    joblib.dump(scaler, file)

def predict_depression_level_logreg(age, gender, cgpa, poor_academic_performance,
                                    academic_criticism, unsatisfied_workload,
                                    non_interest_subject, unhappy_subject,
                                    non_interest_institution, unhappy_institution,
                                    parental_strictness, parental_academic_pressure,
                                    parental_marriage_pressure, parental_career_pressure,
                                    parental_study_abroad, parental_understanding,
                                    sibling_bonding, parental_relationship_stability,
                                    peer_relationship, teacher_support,
                                    partner_relationship_impact, physical_violence,
                                    sexual_violence, verbal_violence, emotional_violence,
                                    little_interest, feeling_down, sleeping_issue,
                                    feeling_tired, poor_appetite, feeling_bad,
                                    trouble_concentrating, slowness, self_harm):

    # Convert gender to numeric
    gender = 1 if gender == 'Female' else 0

    # Define feature names matching those used during fitting
    feature_names = [
        'Age', 'Gender', 'CGPA', 'PoorAcademicPerformanceSelfPerception', 'AcademicCriticismSelfPerception',
        'UnsatisfiedAcademicWorkloadSelfPerception', 'NonInterestSubjectOpinion', 'UnhappySubjectOpinion',
        'NonInterestInstitutionOpinion', 'UnhappyInstitutionOpinion', 'ParentalStrictness', 'ParentalAcademicPressure',
        'ParentalMarriagePressure', 'ParentalCareerPressure', 'ParentalStudyAbroadPressure', 'ParentalUnderstanding',
        'SiblingBonding', 'ParentalRelationshipStability', 'PeerRelationship', 'TeacherSupport',
        'PartnerRelationshipImpact', 'PhysicalViolenceExperience', 'SexualViolenceExperience', 'VerbalViolenceExperience',
        'EmotionalViolenceExperience', 'little interest', 'feeling down', 'Sleeping issue', 'feeling tired',
        'poor appetite', 'feeling bad', 'trouble concertrating', 'slowness', 'self harm'
    ]

    # Map ordinal columns to numerical values using ordinal_mappings
    input_data = pd.DataFrame([[age, gender, cgpa, ordinal_mappings[poor_academic_performance],
                                ordinal_mappings[academic_criticism], ordinal_mappings[unsatisfied_workload],
                                ordinal_mappings[non_interest_subject], ordinal_mappings[unhappy_subject],
                                ordinal_mappings[non_interest_institution], ordinal_mappings[unhappy_institution],
                                ordinal_mappings[parental_strictness], ordinal_mappings[parental_academic_pressure],
                                ordinal_mappings[parental_marriage_pressure], ordinal_mappings[parental_career_pressure],
                                ordinal_mappings[parental_study_abroad], ordinal_mappings[parental_understanding],
                                ordinal_mappings[sibling_bonding], ordinal_mappings[parental_relationship_stability],
                                ordinal_mappings[peer_relationship], ordinal_mappings[teacher_support],
                                ordinal_mappings[partner_relationship_impact], ordinal_mappings[physical_violence],
                                ordinal_mappings[sexual_violence], ordinal_mappings[verbal_violence], ordinal_mappings[emotional_violence],
                                little_interest, feeling_down, sleeping_issue, feeling_tired,
                                poor_appetite, feeling_bad, trouble_concentrating, slowness, self_harm]],
                              columns=feature_names)

    input_data_scaled = scaler.transform(input_data)
    prediction = logreg.predict(input_data_scaled)[0]
    return str(prediction)


# Define Gradio interface with proper input labels and output type
inputs = [
    gr.Slider(minimum=int(df['Age'].min()), maximum=int(df['Age'].max()), label="Age"),
    gr.Dropdown(choices=["Male", "Female"], label="Gender"),
    gr.Slider(minimum=float(df['CGPA'].min()), maximum=float(df['CGPA'].max()), label="CGPA")
]


# Updated labels for ordinal columns
ordinal_labels = {
    'PoorAcademicPerformanceSelfPerception': 'Your Academic Performance is poor.',
    'AcademicCriticismSelfPerception': 'You experience Academic Criticism.',
    'UnsatisfiedAcademicWorkloadSelfPerception': 'You are unsatisfied with your academic workload.',
    'NonInterestSubjectOpinion': 'The subject you are studying is of non-interest to you.',
    'UnhappySubjectOpinion': 'You are unhappy with the subject you are studying.',
    'NonInterestInstitutionOpinion': 'You study at an institution of your non-interest.',
    'UnhappyInstitutionOpinion': 'You are Unhappy with your institution.',

    'ParentalStrictness': 'Your parents are strict.',
    'ParentalAcademicPressure': 'You experience academic pressure from your parents.',
    'ParentalMarriagePressure': 'You experience pressure to get married from your parents.',
    'ParentalCareerPressure': 'You experience career pressure from your parents.',
    'ParentalStudyAbroadPressure': 'You experience pressure to study abroad from your parents.',
    'ParentalUnderstanding': 'Your have poor understanding with your parents.',
    'SiblingBonding': 'You have poor bonding with your siblings.',
    'ParentalRelationshipStability': 'Your parents have unstable relationship.',

    'PeerRelationship': 'You have poor relationship with your peers.',
    'TeacherSupport': 'Teachers do not support you.',
    'PartnerRelationshipImpact': 'You have poor relationship with your partner.',
    'PhysicalViolenceExperience': 'You have experience physical violence.',
    'SexualViolenceExperience': 'You have experience sexual violence.',
    'VerbalViolenceExperience': 'You have experience verbal violence.',
    'EmotionalViolenceExperience': 'You have experienced emotional violence.',
}

# Add radio buttons for ordinal columns with updated labels
for col in ordinal_columns:
    inputs.append(gr.Radio(choices=list(ordinal_mappings.keys()), label=ordinal_labels[col]))


# Add sliders for the remaining inputs
additional_inputs = [
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your interest changed over work and activities? (0= No change)"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel down?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Do you struggle to sleep?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel tired?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your appetite changed?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel bad about yourself?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your concentration levels changed?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Do you feel slow?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Have you had suicidal thoughts?")
]

inputs.extend(additional_inputs)

# # Sample input values (these should match the features and their order in your function)
# sample_input = {
#     "Age": 25,
#     "Gender": "Female",  # Assuming string value for Gender
#     "CGPA": 3.5,
#     "PoorAcademicPerformanceSelfPerception": "Disagree",  # String value, needs mapping
#     "AcademicCriticismSelfPerception": "Neutral",  # String value, needs mapping
#     "UnsatisfiedAcademicWorkloadSelfPerception": "Strongly disagree",  # String value, needs mapping
#     "NonInterestSubjectOpinion": "Disagree",  # String value, needs mapping
#     "UnhappySubjectOpinion": "Neutral",  # String value, needs mapping
#     "NonInterestInstitutionOpinion": "Strongly disagree",  # String value, needs mapping
#     "UnhappyInstitutionOpinion": "Disagree",  # String value, needs mapping
#     "ParentalStrictness": "Strongly agree",  # String value, needs mapping
#     "ParentalAcademicPressure": "Agree",  # String value, needs mapping
#     "ParentalMarriagePressure": "Neutral",  # String value, needs mapping
#     "ParentalCareerPressure": "Strongly disagree",  # String value, needs mapping
#     "ParentalStudyAbroadPressure": "Neutral",  # String value, needs mapping
#     "ParentalUnderstanding": "Strongly agree",  # String value, needs mapping
#     "SiblingBonding": "Strongly agree",  # String value, needs mapping
#     "ParentalRelationshipStability": "Neutral",  # String value, needs mapping
#     "PeerRelationship": "Agree",  # String value, needs mapping
#     "TeacherSupport": "Strongly agree",  # String value, needs mapping
#     "PartnerRelationshipImpact": "Neutral",  # String value, needs mapping
#     "PhysicalViolenceExperience": 0,
#     "SexualViolenceExperience": 1,
#     "VerbalViolenceExperience": 0,
#     "EmotionalViolenceExperience": 2,
#     "little interest": 1,
#     "feeling down": 3,
#     "Sleeping issue": 2,
#     "feeling tired": 4,
#     "poor appetite": 2,
#     "feeling bad": 3,
#     "trouble concertrating": 1,
#     "slowness": 2,
#     "self harm": 0
# }

# # Convert the sample input dictionary to a DataFrame
# sample_df = pd.DataFrame([sample_input])

# # Map ordinal columns to numerical values using ordinal_mappings
# for col in ordinal_columns:
#     sample_df[col] = sample_df[col].map(ordinal_mappings)

# # Convert gender to numeric
# sample_df['Gender'] = 1 if sample_df['Gender'].iloc[0] == 'Female' else 0

# # Scale the input data using the scaler from your model
# sample_df_scaled = scaler.transform(sample_df)

# # Predict using your function
# prediction = predict_depression_level_logreg(*sample_df_scaled[0])

# # Print or use the prediction as needed
# print("Predicted Depression Level:", prediction)


output = gr.Textbox(label="Predicted Depression Level")

# Create Gradio interface
iface = gr.Interface(fn=predict_depression_level_logreg, inputs=inputs, outputs=output, title="Understand your Depression Levels",
                     description="A questionnaire to determine potential depression severity using the questions below - ")

iface.launch(debug=True, share=True)

# #importing libraries
# import numpy as np
# import lime
# # import lime.lime_tabular
# from lime import lime_tabular

# # Training Logistic Regression classifier
# model = LogisticRegression()
# model.fit(X_train, y_train)

# # Defining the lime explainer
# explainer = lime_tabular.LimeTabularExplainer(
#     training_data=np.array(X_train),
#     feature_names=X_train.columns,
#     class_names=['MINIMAL','MILD','Moderate','ModeratelySevere','Severe'],
#     mode='classification'
# )

# #importing libraries
# import numpy as np
# import lime
# # import lime.lime_tabular
# from lime import lime_tabular

# # Training Logistic Regression classifier
# model = LogisticRegression()
# model.fit(X_train, y_train)

# # Defining the lime explainer
# explainer = lime_tabular.LimeTabularExplainer(
#     training_data=np.array(X_train),
#     feature_names=X_train.columns,
#     class_names=['MINIMAL','MILD','Moderate','ModeratelySevere','Severe'],
#     mode='classification'
# )

# exp = explainer.explain_instance(
#     data_row=X_test.iloc[5],
#     predict_fn=model.predict_proba, num_features = 12
# )

# exp.show_in_notebook(show_table=True)