File size: 8,551 Bytes
37d9988
8fde1ac
a7bcef8
 
 
37d9988
a7bcef8
37d9988
 
 
a7bcef8
37d9988
 
a7bcef8
37d9988
 
a7bcef8
37d9988
a7bcef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d9988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bcef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d9988
 
a7bcef8
 
37d9988
a7bcef8
37d9988
a7bcef8
37d9988
a7bcef8
 
 
37d9988
a7bcef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d9988
a7bcef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37d9988
a7bcef8
62e0d6c
 
a7bcef8
37d9988
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Install necessary libraries
#!pip install gradio pandas scikit-learn joblib

import pandas as pd
import joblib
import gradio as gr

# Load the model and scaler from the binary files
with open('model.bin', 'rb') as file:
    model = joblib.load(file)

with open('scaler.bin', 'rb') as file:
    scaler = joblib.load(file)


# Define ordinal mappings and columns
ordinal_mappings = {
    'Not Applicable': 0,
    'Strongly disagree': 1,
    'Disagree': 2,
    'Neutral': 3,
    'Agree': 4,
    'Strongly agree': 5
}

ordinal_columns = [
    'PoorAcademicPerformanceSelfPerception', 'AcademicCriticismSelfPerception',
    'UnsatisfiedAcademicWorkloadSelfPerception', 'NonInterestSubjectOpinion',
    'UnhappySubjectOpinion', 'NonInterestInstitutionOpinion',
    'UnhappyInstitutionOpinion', 'ParentalStrictness', 'ParentalAcademicPressure',
    'ParentalMarriagePressure', 'ParentalCareerPressure',
    'ParentalStudyAbroadPressure', 'ParentalUnderstanding', 'SiblingBonding',
    'ParentalRelationshipStability', 'PeerRelationship', 'TeacherSupport',
    'PartnerRelationshipImpact', 'PhysicalViolenceExperience',
    'SexualViolenceExperience', 'VerbalViolenceExperience',
    'EmotionalViolenceExperience'
]


# Define the prediction function
def predict_depression_level(age, gender, cgpa, poor_academic_performance,
                             academic_criticism, unsatisfied_workload,
                             non_interest_subject, unhappy_subject,
                             non_interest_institution, unhappy_institution,
                             parental_strictness, parental_academic_pressure,
                             parental_marriage_pressure, parental_career_pressure,
                             parental_study_abroad, parental_understanding,
                             sibling_bonding, parental_relationship_stability,
                             peer_relationship, teacher_support,
                             partner_relationship_impact, physical_violence,
                             sexual_violence, verbal_violence, emotional_violence,
                             little_interest, feeling_down, sleeping_issue,
                             feeling_tired, poor_appetite, feeling_bad,
                             trouble_concentrating, slowness, self_harm):

    # Convert gender to numeric
    gender = 1 if gender == 'Female' else 0

    # Define feature names matching those used during fitting
    feature_names = [
        'Age', 'Gender', 'CGPA', 'PoorAcademicPerformanceSelfPerception', 'AcademicCriticismSelfPerception',
        'UnsatisfiedAcademicWorkloadSelfPerception', 'NonInterestSubjectOpinion', 'UnhappySubjectOpinion',
        'NonInterestInstitutionOpinion', 'UnhappyInstitutionOpinion', 'ParentalStrictness', 'ParentalAcademicPressure',
        'ParentalMarriagePressure', 'ParentalCareerPressure', 'ParentalStudyAbroadPressure', 'ParentalUnderstanding',
        'SiblingBonding', 'ParentalRelationshipStability', 'PeerRelationship', 'TeacherSupport',
        'PartnerRelationshipImpact', 'PhysicalViolenceExperience', 'SexualViolenceExperience', 'VerbalViolenceExperience',
        'EmotionalViolenceExperience', 'little interest', 'feeling down', 'Sleeping issue', 'feeling tired',
        'poor appetite', 'feeling bad', 'trouble concertrating', 'slowness', 'self harm'
    ]

    # Map ordinal columns to numerical values using ordinal_mappings
    input_data = pd.DataFrame([[age, gender, cgpa, ordinal_mappings[poor_academic_performance],
                                ordinal_mappings[academic_criticism], ordinal_mappings[unsatisfied_workload],
                                ordinal_mappings[non_interest_subject], ordinal_mappings[unhappy_subject],
                                ordinal_mappings[non_interest_institution], ordinal_mappings[unhappy_institution],
                                ordinal_mappings[parental_strictness], ordinal_mappings[parental_academic_pressure],
                                ordinal_mappings[parental_marriage_pressure], ordinal_mappings[parental_career_pressure],
                                ordinal_mappings[parental_study_abroad], ordinal_mappings[parental_understanding],
                                ordinal_mappings[sibling_bonding], ordinal_mappings[parental_relationship_stability],
                                ordinal_mappings[peer_relationship], ordinal_mappings[teacher_support],
                                ordinal_mappings[partner_relationship_impact], ordinal_mappings[physical_violence],
                                ordinal_mappings[sexual_violence], ordinal_mappings[verbal_violence], ordinal_mappings[emotional_violence],
                                little_interest, feeling_down, sleeping_issue, feeling_tired,
                                poor_appetite, feeling_bad, trouble_concentrating, slowness, self_harm]],
                              columns=feature_names)

    input_data_scaled = scaler.transform(input_data)
    prediction = model.predict(input_data_scaled)[0]
    return "Your depression severity may be " + str(prediction)


# Define Gradio interface inputs
inputs = [
    gr.Slider(minimum=0, maximum=100, label="Age"),
    gr.Dropdown(choices=["Male", "Female"], label="Gender"),
    gr.Slider(minimum=0.0, maximum=4.0, label="CGPA")
]



# Updated labels for ordinal columns
ordinal_labels = {
    'PoorAcademicPerformanceSelfPerception': 'Your Academic Performance is poor.',
    'AcademicCriticismSelfPerception': 'You experience Academic Criticism.',
    'UnsatisfiedAcademicWorkloadSelfPerception': 'You are unsatisfied with your academic workload.',
    'NonInterestSubjectOpinion': 'The subject you are studying is of non-interest to you.',
    'UnhappySubjectOpinion': 'You are unhappy with the subject you are studying.',
    'NonInterestInstitutionOpinion': 'You study at an institution of your non-interest.',
    'UnhappyInstitutionOpinion': 'You are Unhappy with your institution.',

    'ParentalStrictness': 'Your parents are strict.',
    'ParentalAcademicPressure': 'You experience academic pressure from your parents.',
    'ParentalMarriagePressure': 'You experience pressure to get married from your parents.',
    'ParentalCareerPressure': 'You experience career pressure from your parents.',
    'ParentalStudyAbroadPressure': 'You experience pressure to study abroad from your parents.',
    'ParentalUnderstanding': 'Your have poor understanding with your parents.',
    'SiblingBonding': 'You have poor bonding with your siblings.',
    'ParentalRelationshipStability': 'Your parents have unstable relationship.',

    'PeerRelationship': 'You have poor relationship with your peers.',
    'TeacherSupport': 'Teachers do not support you.',
    'PartnerRelationshipImpact': 'You have poor relationship with your partner.',
    'PhysicalViolenceExperience': 'You have experience physical violence.',
    'SexualViolenceExperience': 'You have experience sexual violence.',
    'VerbalViolenceExperience': 'You have experience verbal violence.',
    'EmotionalViolenceExperience': 'You have experienced emotional violence.',
}


# Add radio buttons for ordinal columns with updated labels
for col in ordinal_columns:
    inputs.append(gr.Radio(choices=list(ordinal_mappings.keys()), label=ordinal_labels[col]))


# Add sliders for the remaining inputs
additional_inputs = [
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your interest changed over work and activities? (0= No change)"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel down?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Do you struggle to sleep?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel tired?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your appetite changed?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How often do you feel bad about yourself?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="How has your concentration levels changed?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Do you feel slow?"),
    gr.Slider(minimum=0, maximum=5, step=1, label="Have you had suicidal thoughts?")
]

inputs.extend(additional_inputs)


output = gr.Textbox(label="Predicted Depression Level")


# Create Gradio interface
iface = gr.Interface(fn=predict_depression_level, inputs=inputs, outputs=output, title="SAD: Self Assessment of Depression",
                     description="A questionnaire to determine potential depression severity.")

iface.launch(debug=True, share=True)