import streamlit.components.v1 as components from streamlit_player import st_player from transformers import pipeline import streamlit as st import random st.header("stream your emotions") st.subheader("tester") def tester(text): classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion') results = classifier(text) #st.subheader(results[0]['label']) #tester(emo) generator = st.button("Generate Song!") if (generator == True): st.subheader(results[0]['label']) if (results[0]['label']=="joy"): #songs for joy emotion with open('joyplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) elif (results[0]['label']=="fear"): with open('fearplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) elif (results[0]['label']=="anger"): #songs for anger emotion with open('angryplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) elif (results[0]['label']=="sadness"): #songs for sadness emotion with open('sadplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) elif (results[0]['label']=="surprise"): st.write("gulat ka noh") elif (results[0]['label']=="love"): with open('loveplaylist.txt') as f: contents = f.read() components.html(contents,width=560,height=325) emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.") st.sidebar.subheader("Model Description") st.sidebar.write("This application uses the DistilBERT model, a distilled version of BERT. The BERT framework uses" ) tester(emo)