File size: 1,621 Bytes
6dba858
88055ae
 
6dba858
f301aac
88055ae
cb68822
88055ae
2ecd65e
88055ae
1cd7ed4
6dba858
cb68822
f92543a
 
d2ac7fa
 
 
 
 
 
 
 
 
 
 
 
f92543a
 
d2ac7fa
6b072bf
d2ac7fa
 
 
 
6b072bf
d2ac7fa
 
 
 
 
 
 
 
3b61fe2
6b072bf
4854d0b
d7857b3
68de716
88055ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import streamlit.components.v1 as components
from streamlit_player import st_player
from transformers import pipeline
import streamlit as st
import random 


def tester(text):
  classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
  results = classifier(text)
  #st.subheader(results[0]['label'])

#tester(emo)
  generator = st.button("Generate Song!")
  if (generator == True):

    if (results[0]['label']=="joy"): #songs for joy emotion
      with open('joyplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
    
    elif (results[0]['label']=="fear"):
      with open('fearplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
    
    elif (results[0]['label']=="anger"): #songs for anger emotion
      with open('angryplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)    

    elif (results[0]['label']=="sadness"): #songs for sadness emotion
      with open('sadplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)

    elif (results[0]['label']=="surprise"):
      st.write("gulat ka noh")

    elif (results[0]['label']=="love"):
      with open('loveplaylist.txt') as f:
        contents = f.read()
      components.html(contents,width=560,height=325)
 
emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.", placeholder="tester po")

tester(emo)