Spaces:
Runtime error
Runtime error
File size: 1,621 Bytes
6dba858 88055ae 6dba858 f301aac 88055ae cb68822 88055ae 2ecd65e 88055ae 1cd7ed4 6dba858 cb68822 f92543a d2ac7fa f92543a d2ac7fa 6b072bf d2ac7fa 6b072bf d2ac7fa 3b61fe2 6b072bf 4854d0b d7857b3 68de716 88055ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit.components.v1 as components
from streamlit_player import st_player
from transformers import pipeline
import streamlit as st
import random
def tester(text):
classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
results = classifier(text)
#st.subheader(results[0]['label'])
#tester(emo)
generator = st.button("Generate Song!")
if (generator == True):
if (results[0]['label']=="joy"): #songs for joy emotion
with open('joyplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="fear"):
with open('fearplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="anger"): #songs for anger emotion
with open('angryplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="sadness"): #songs for sadness emotion
with open('sadplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
elif (results[0]['label']=="surprise"):
st.write("gulat ka noh")
elif (results[0]['label']=="love"):
with open('loveplaylist.txt') as f:
contents = f.read()
components.html(contents,width=560,height=325)
emo = st.text_input("Enter a text/phrase/sentence. A corresponding song will be recommended based on its emotion.", placeholder="tester po")
tester(emo)
|