File size: 1,641 Bytes
dd25b4b
88055ae
 
ff47006
88055ae
 
 
2682280
88055ae
0ebbd67
2ecd65e
b34a926
2ecd65e
88055ae
480a784
652f314
 
2ecd65e
652f314
 
2ecd65e
652f314
 
2ecd65e
652f314
 
2ecd65e
652f314
 
c0bbccb
 
 
652f314
 
 
f69d52d
89c7fb6
 
 
652f314
 
 
88055ae
2ecd65e
68de716
 
88055ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
from streamlit_player import st_player
from transformers import pipeline
from IPython.display import YouTubeVideo


def tester(text):
  #classifier = pipeline("sentiment-analysis", model='arpanghoshal/EmoRoBERTa')
  #classifier = pipeline("sentiment-analysis", model='cardiffnlp/twitter-roberta-base-emotion')
  #classifier = pipeline("sentiment-analysis", 'j-hartmann/emotion-english-distilroberta-base')
  classifier = pipeline("sentiment-analysis", model='bhadresh-savani/distilbert-base-uncased-emotion')
  
 
  results = classifier(text)
  st.write(results[0]['label'])
  
  if (results[0]['label']=="anger"):
    st_player("https://www.youtube.com/watch?v=kh0BWQ4Uo6w")
    
  elif (results[0]['label']=="disgust"):
    st_player("https://www.youtube.com/watch?v=zWq2TT3ieGE")
    
  elif (results[0]['label']=="fear"):
    st_player("https://www.youtube.com/watch?v=iyEUvUcMHgE")
    
  elif (results[0]['label']=="joy"):
    st_player("https://www.youtube.com/watch?v=1k8craCGpgs")
    
  elif (results[0]['label']=="sadness"):
    #video = YouTubeVideo("1k8craCGpgs")
    #display(video)
    st_player("https://www.youtube.com/watch?v=BZsXcc_tC-o")
    
  elif (results[0]['label']=="surprise"):
    st_player("https://youtu.be/CmSKVW1v0xM")

      
  elif (results[0]['label']=="love"):
    st_player("https://www.youtube.com/watch?v=XVhEm62Uqog")
  
  return results[0]['label']
  #return results

emo = st.text_input('This application detects the emotion in your text input and suggests a song that matches it. Please enter text below to try:')
tester(emo)