Spaces:
Sleeping
Sleeping
File size: 1,878 Bytes
3ebdd53 a3ac8df 3ebdd53 a3ac8df 3ebdd53 a3ac8df 3ebdd53 a3ac8df 3ebdd53 a3ac8df 3ebdd53 a3ac8df 3ebdd53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import json
import os
from datasets import Dataset, DatasetDict, DatasetInfo
from huggingface_hub import login, HfApi
from typing import List
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
# Initialize FastAPI
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Allow all origins (or specify specific origins)
allow_credentials=True,
allow_methods=["*"], # Allow all HTTP methods
allow_headers=["*"], # Allow all headers
)
TOKEN = os.getenv("token")
class Recipe(BaseModel):
ingredients: List[str]
instructions: str
DATASET_PATH = "/mnt/data/sharktide/recipes/data"
# Ensure the 'data' folder exists
if not os.path.exists(DATASET_PATH):
os.makedirs(DATASET_PATH)
# Authentication for Hugging Face
login(token=TOKEN)
@app.put("/add/recipe")
async def add_recipe(filename: str, recipe: Recipe):
# Define the file path based on the filename query parameter
file_path = os.path.join(DATASET_PATH, f"{filename}.json")
# Check if the file already exists
if os.path.exists(file_path):
raise HTTPException(status_code=400, detail="File already exists")
# Prepare the data to be written in JSON format
recipe_data = recipe.dict() # Convert Recipe model to dictionary
# Write the data to the new file
try:
with open(file_path, "w") as f:
json.dump(recipe_data, f, indent=4)
dataset = Dataset.from_json(file_path) # Load the new file
dataset.push_to_hub("sharktide/recipes") # Push the dataset to the Hugging Face Hub
return {"message": f"Recipe '{filename}' added successfully."}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error writing file: {str(e)}")
|