import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization") model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization") def generate_summary(text): inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True) summary_ids = model.generate(inputs['input_ids'], max_new_tokens=100, do_sample=False) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Post-process the summary to include only specific points important_points = extract_important_points(summary) return important_points def extract_important_points(summary): # This is a very basic example of how you might filter for key phrases # You can refine this with more sophisticated NLP techniques keywords = ["change", "request", "important", "needs", "must", "critical", "required", "suggested"] filtered_lines = [line for line in summary.split('. ') if any(keyword in line.lower() for keyword in keywords)] return '. '.join(filtered_lines) # Streamlit interface st.title("Text Summarization App") # User text input user_input = st.text_area("Enter the text you want to summarize", height=200) if st.button("Generate Summary"): if user_input: with st.spinner("Generating summary..."): summary = generate_summary(user_input) st.subheader("Filtered Summary:") st.write(summary) else: st.warning("Please enter text to summarize.") # Instructions for using the app st.write("Enter your text in the box above and click 'Generate Summary' to get a summarized version of your text.")