sharath6900's picture
Update app.py
4ac653d verified
raw
history blame
2.89 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
def generate_user_stories(text, prompt):
# Combine prompt with the text to guide the summarization
combined_input = f"Prompt: {prompt}\n\nText: {text}"
inputs = tokenizer([combined_input], max_length=1024, return_tensors='pt', truncation=True)
summary_ids = model.generate(inputs['input_ids'], max_new_tokens=150, do_sample=False)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Post-process to format as user stories
user_stories = format_as_user_stories(summary)
return user_stories
def format_as_user_stories(summary):
# Placeholder for formatting logic to extract user stories
# Here you can add specific rules or patterns to convert summary into user stories
lines = summary.split('. ')
user_stories = []
for line in lines:
# Example of simple pattern matching (can be customized)
if 'as a' in line.lower() and 'i want' in line.lower():
user_stories.append(line)
return '. '.join(user_stories)
# Initialize session state for input history if it doesn't exist
if 'input_history' not in st.session_state:
st.session_state['input_history'] = []
# Streamlit interface
st.title("User Story Generator")
# User text inputs
bulk_text = st.text_area("Enter the bulk text (e.g., client calls, meeting transcripts)", height=300)
prompt = st.text_input("Enter the prompt for the user stories", "Extract user stories from the following text.")
if st.button("Generate User Stories"):
if bulk_text and prompt:
with st.spinner("Generating user stories..."):
user_stories = generate_user_stories(bulk_text, prompt)
# Save the input and user stories to the session state history
st.session_state['input_history'].append({"text": bulk_text, "prompt": prompt, "user_stories": user_stories})
st.subheader("Generated User Stories:")
st.write(user_stories)
else:
st.warning("Please enter both the bulk text and the prompt.")
# Display the history of inputs and user stories
if st.session_state['input_history']:
st.subheader("History")
for i, entry in enumerate(st.session_state['input_history']):
st.write(f"**Input {i+1} (Text):** {entry['text']}")
st.write(f"**Prompt {i+1}:** {entry['prompt']}")
st.write(f"**User Stories {i+1}:** {entry['user_stories']}")
st.write("---")
# Instructions for using the app
st.write("Enter your bulk text and a prompt for user story extraction, then click 'Generate User Stories' to get user stories from the text.")